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Abstract

With the release of new head-mounted displays (HMDs) and new omni-directional capture systems,
360-degree video is one of the latest and most powerful trends in immersive media, with an increasing
potential for the next decades. However, especially creating 360-degree content in 3D is still an error-prone
task with many limitations to overcome. This paper describes the critical aspects of 3D content creation for
360-degree video. In particular, conflicts of depth cues and binocular rivalry are reviewed in detail, as these
cause eye fatigue, headache, and even nausea. Both the reasons for the appearance of the conflicts and how
to detect some of these conflicts by objective image analysis methods are detailed in this paper. The latter is
the main contribution of this paper and part of long-term research roadmap of the authors in order to provide
a comprehensive framework for artifact detection and correction in 360-degree videos. Then, experimental
results are demonstrating the performance of the proposed approaches in terms of objective measures and

visual feedback. Finally, the paper concludes with a discussion and future work.
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1 Introduction

360-degree video, also called live-action virtual reality (VR), is one of the lat-
est and most powerful trends in immersive media, with an increasing potential
for the next decades. In particular, head-mounted display (HMD) technology
like e.g. HTC Vive, Oculus Rift and Samsung Gear VR is maturing and en-
tering professional and consumer markets. On the other side, capture devices
like e.g. Facebook’s Surround 360 camera, Nokia Ozo and Google Odyssee are
some of the latest technologies to capture 360-degree video in stereoscopic 3D
(S3D).

However, capturing 360-degree videos is not an easy task as there are many phys-
ical limitations which need to be overcome, especially for capturing and post-
processing in S3D. In general, such limitations result in artifacts which cause
visual discomfort when watching the content with a HMD. The artifacts or issues
can be divided into three categories: binocular rivalry issues, conflicts of depth

Figure 1: Example of over-
lapping errors

cues and artifacts which occur in both monocular and stereoscopic 360-degree content production (see Section
2 for further details). Issues of the first two categories have been investigated for standard S3D content e.g.
for cinema screens and 3D-TV [Knorr et al., 2012], [Vatolin et al., 2016], [Lambooij et al., 2009]. The third
category consists of typical artifacts which only occur in multi-camera systems used for panorama capturing.
As native S3D 360-degree video production is still very error-prone, especially with respect to binocular rivalry
issues, many high-end S3D productions are shot in 2D 360-degree and post-converted to S3D.



This paper is dealing with automatic artifact detection in omni-directional images (ODIs) for quality control
within the post-production workflow. To our knowledge, there is no scientific publication in this area and thus
an open research field of high importance. Currently, the post-production workflow basically consists of six
steps: 1) data ingest, 2) rough stitching of camera views (automatically), 3) fine stitching (manually), 4) color-
grading, 5) editing and 6) finishing (rendering). Especially, the fine stitching process, which includes removal
of stitching and blending artifacts as well as wire-, rig-, shadow- and contamination removal, is a labor intensive
process with many intermediate rendering steps in order to check the quality of the results on HMDs. It is our
goal to provide algorithms and tools for automatic detection and, if possible, correction of artifacts in order to
give automatic feedback to artists and reduce time and efforts in post.

The paper is structured as follows. In Section 2, the state of the art is reviewed, in particular the technical
challenges of 360-degree capturing and the resulting artifacts and issues. Then, in Section 3, we describe the
proposed modular system and approaches for color mismatch and geometrical misalignment detection, which is
the main contribution of this paper and part of our long-term research roadmap for quality control in 360-degree
videos. In Section 4, experimental results for a test dataset of 13 ODIs captured with 7 different 360 capture
devices (Google Odyssee, Jaunt, OmniCam-3D, Ozo, Panocam, Surround-360 and a self-constructed system
with Mobius cameras) are demonstrating the performance of the proposed approaches in terms of objective
measures and visual feedback. Finally, the paper concludes with a discussion and future work in Section 5.

2 State of the Art

Omni-directional image stitching is a process of
synthesizing multiple views together on a com-
mon virtual surface. The overlapping regions
between the cameras are first matched using dif-
ferent planar transformation models (e.g. affine,
perspective or cubic transformation models),
and the transition between the overlapping parts
is estimated via blending parameters. Then, the
views are blended and warped onto the omni-
directional surface using the estimated geomet-
ric relation between the omni-directional sur-
face and the image coordinates.

ODI stitching is challenging as the capturing
devices have some inevitable drawbacks, e.g.
the optical centers of the individual cameras do
not share the same center of projection. How-
ever, applying planar transformation models in
order to synthesize multiple views together ona - Fjgure 2: Principles of an off-centered slit camera model for
common virtual surface is only valid if the cap-  capturing 360-degree in S3D

tured scene is a planar surface itself or the cam-

eras share the same center of projection [Hartley and Zisserman, 2003].

For off-centered cameras, transformation errors occur which increase with the off-center distance and the
amount of depth within the captured scene. Figure 1 shows exemplary the viewport of an ODI with a stitching
and blending error caused by a cross-fading in the overlapping area of two adjacent cameras.

In order to reduce stitching errors, the baseline between the cameras should be minimized. On the other side,
the baseline between the cameras of different views needs to be increased for S3D content creation as parallax
is required for generating a 3D effect, i.e. stitching and blending errors actually increase in S3D 360-degree
content.

Figure 2 shows the principles of an off-centered slit camera model for capturing 360-degree in S3D. Half of
the field of view of each camera is dedicated to either the left view of a stereoscopic ODI and the other half
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is dedicated to the right view of a stereoscopic ODI. At this point, it needs to be mentioned that two adjacent
cameras must share at least 50% of their fields of view as the right half of one camera view (e.g. cam{) and the
left half of the adjacent view (e.g. cams) form a stereoscopic image pair as illustrated in Figure 2.

2.1 Common artifacts

Whether native S3D or conversion from 2D to stereoscopic 3D, they both must display a high technical quality,
while also taking all aspects of the human binocular visual system into account in order to reduce visual dis-
comfort [Knorr et al., 2012]. This is even more essential, the higher the degree of immersion is, which is the
case for VR by using HMDs. Artifacts arising from improper camera alignments, physical limitations of the
chosen capture system, errors in post-production or compositing, etc. are still inevitable and can be categorized
into three categories: binocular rivalry issues, conflicts of depth cues and artifacts which occur in both monoc-
ular and stereoscopic 360-degree content production.

Table 1 gives an overview of the first category. Most of the issues only occur in native S3D productions while
issues of the second category (see Table 2) mainly appear in 2D to S3D conversion. Finally, Table 3 details
issues which can occur in both 2D and S3D production as well as in native S3D or 2D to S3D conversion.

[ Artifact/ Issue | Characteristics | Caused by |
Geometrical misalign- Improper (vertical) alignment of left and right | Cameras or lenses not properly aligned
ment 1mages Tilting head or changing yaw while looking at the pole caps with a
HMD

Luminance/ Difference in hue, saturation and/or intensity Cameras not properly matched (e.g. different aperture)

colorimetry between left and right image Varying lighting conditions at different camera locations

Visual mismatch Reflections, lens flares, polarization Varying lighting conditions at different camera locations
Contamination Contamination due to environmental conditions (e.g. rain, dust, etc.)
Missing or different objects in one of the Compositing errors in post
views

Depth of field/ Difference in sharpness or depth of field Different aperture settings of cameras

sharpness mismatch Focal length of cameras not properly matched

Synchronization Left and right image sequences are not syn- Cameras are not synchronized/ gen-locked
chronized Editing errors in post

Hyperconvergence/ Objects are too close to or too far from the Too much negative or positive parallax between left and right image

hyperdivergence viewer’s eyes

Pseudo-3D Left and right images are swapped Swapped images in HMDs

Editing error in post
Ghosting Double edges of objects Stitching and blending artifacts in post

Table 1: Binocular rivalry issues in stereoscopic 360-degree videos

2.2 Quality assessment

Over the last years, many publications focused on the assessment of 3D quality in terms of subjective and objec-
tive quality metrics. In [Khaustova et al., 2015], the authors investigated how viewer annoyance depends on var-
ious technical parameters such as vertical disparity, rotation and field-of-view mismatches as well as color and
luminance mismatches between the views. [Chen et al., 2014] proposed several objective metrics for luminance
mismatch and evaluated their correlation with the results of subjective experiments. In [Goldmann et al., 2010],
an artifact specific to S3D video is analyzed in depth by evaluating visual discomfort caused by temporal asyn-
chrony. Finally, in [Battisti et al., 2015], a full-reference metric is presented by evaluation of a large variety of
measures by taking 2D picture quality, binocular rivalry and depth map degradation into account. The authors
maximized the correlation with the mean opinion score (MOS) by using linear regression. However, none of
the 3D quality assessment approaches in the literature deal with ODIs.

In this paper, however, the focus lies on artifact detection in order to support the artist by giving direct quality
feedback during post-production, in particular for geometrical misalignment and color mismatch. Thus, full-
reference objective quality metrics can not be applied in this application. The authors of [Dong et al., 2013]
propose a stereo camera distortion detecting method based on statistical models in order to detect vertical mis-
alignment, camera rotation, unsynchronized zooming, and color misalignment in native S3D content.



[ Depth conflict | Characteristics | Caused by
Vergence vs. Eyes accommodate on screen plane but converge or diverge on ob- Parallax between objects in the left and right
accommodation jects in front or behind the screen plane view
Stereopsis vs. Foreground objects are occluded by background objects 3D compositing errors in post
interposition
Accommodation vs. Eyes accommodate on screen plane but scene or part of scene is out Wide aperture of cameras
depth of field of focus
Stereopsis vs. Monocular depth cue "perspective” or "aerial perspective" does not 3D compositing errors in post
(aerial) perspective match with binocular depth cue "stereopsis"
Stereopsis Vvs. Motion of objects does not match with their distance 3D compositing errors in post
motion parallax
Stereopsis vs. Relative or familiar size of objects does not match with their distance | 3D compositing errors in post
size
Stereopsis Vvs. Distance or shape of objects does not match with their shadings 3D compositing errors in post
light and shading
Stereopsis vs. Texture gradients are not in line with the descending of depth in the 3D compositing errors in post
texture gradient scene

Table 2: Depth conflicts in stereoscopic 360-degree videos

[ Artifact/ Issue | Characteristics | Caused by

Stitching artifacts Visible seams and misaligned/ broken edges Improper camera arrangement

Registration and alignment errors in post
Blending artifacts Visible color- and luminance mismatches of Varying lighting conditions at different camera locations
regions within an ODI

Compositing errors in post
Warping artifacts Visible deformations of objects Improper camera arrangement

Registration and alignment errors in post
Wobbling artifacts Unsteady scene appearance over time Temporal inconsistent stitching of camera views (non-stabilized
image sequences)

Table 3: Artifacts in both monocular and stereoscopic 360-degree videos

[Voronov et al., 2013] introduce a large variety of artifact detection methods, including color mismatch and
vertical disparity. With respect to the color mismatch approach, the RGB color space is used which, in our
application, is inappropriate as the HSV color space is usually preferred in post-production.

3 Proposed Approach

Figure 3 shows an overview of the proposed modular system to detect color mismatch and vertical misalignment
as part of an overall framework for detecting and correcting artifacts outlined in Subsection 2.1. All of the
underlying algorithms are implemented in OFX and thus useable as plugins in professional post-production
applications like Nuke, Fusion, Mamba FX or Natron (see Figure 4). The following subsections describe the
underlying methods in more detail.

3.1 Geometrical misalignment

Geometrical misalignment, in particular vertical parallax, is present when objects in the scene are not vertically
aligned between the left and right stereo images. In order to detect vertical parallax, we first compute sparse
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Figure 3: Overview of proposed system to detect color mismatch and vertical misalignment



Figure 4: Screenshot of Natron including the node graph with the modules, visualization of sparse and dense
disparities, and user input and output parameters for the lake ODI captured with the Surround-360 rig

disparities between left and right view. First, distinctive features are extracted in both stereo images using the
SUREF feature point detector and descriptor SURF [Bay et al., 2006]. Then, for each extracted feature point a
descriptor is computed that represents the local properties of the image around the feature point.

The feature points are then matched between the two stereo images as follows. Each feature point in the
left image is compared to the feature points in the reference image by calculating the Euclidean distance
between their descriptor vectors. A matching pair is detected if its distance is closer than 0.7 times the dis-
tance of the second nearest neighbour [Bay et al., 2006]. Unreliable matches are eliminated with RANSAC
[Fischler and Bolles, 1981] using the epipolar geometry as validation model. Finally, the vertical component of
the disparities of all remaining matches is computed and displayed as percentage of the image width.

3.2 Color mismatch

The color mismatch module compares the color properties between the two stereo images. In the first step,
pixels which are present in both the left and right images are detected using the semi-global matching approach
for dense disparity estimation as described in [Hirschmuller, 2008]. The confidence maps of the resulting left-
to-right and right-to-left disparity maps can be thresholded in order to take only higher reliable disparities into
account. In the experimental results in Section 4, we applied a threshold of 50%. For all corresponding pixels
above the threshold, the color properties, i.e. mean and standard deviation of the color channels, are computed
for the left and right images, respectively, as introduced by [Reinhard et al., 2001]. Instead of using the laf
color space, as proposed by the authors, we extract the same statistics but in the HSV color space for reasons
mentioned above.

With Q; and Q, as the sets of corresponding pixels in the left image I; and right image I, and with I;(p) and
I (p) as the colors at the pixel p defined in the HSV color space, the means for each channel are defined as

Y L(p), xe{lr} 1)
peq;
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and the standard deviations for each color channel as
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For comparison, we take the left image as reference and compute the mean difference (u, — u;)/p; and the
standard deviation difference (o, —o;)/0;. Finally, the determined statistics can be used for color transfer and
thus applied in order to correct the right or left image, respectively.

4 Experimental Results

In our test scenario, we chose exemplary a dataset consisting of 13 equirectangular stereo ODIs captured with
7 different 360 capture devices (Google Odyssee, Jaunt, OmniCam-3D, Nokia Ozo, Panocam, Facebook’s
Surround-360 and a self-constructed system with Mobius cameras by Jim Waters') and analyzed the images
with respect to geometrical misalignment and color mismatch as proposed in Section 3. As the results will also
heavily depend on the captured content and the amount of post-production efforts, they can only be seen as an
indiction for the characteristics of the camera systems under test.

In order to have similar conditions for all images, we only selected a vertical field of view of 60 degree instead
of 180 degree for the equirectangular ODIs for two reasons: 1) Some of the images do either have no pole
caps (like Google Odyssee and OmniCam-3D) or the rig at the nadir has not been removed (Panocam images)
and 2) The zenith and nadir have a large degree of distortion within the equirectangular ODI (e.g. the first row
represents a single pixel in the sphere).

4.1 Geometrical misalignment

Vertical Parallax
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the corridor sequence. In relation to S3D cinema
movies, where the vertical parallax ranges between 0
and 0,14% according to the study in [ Vatolin et al., 2016], most of the geometrical misalignments are extremely
high, and thus would cause a high degree of visual discomfort.

Figure 5: Vertical Parallax

4.2 Color mismatch

Figure 6 illustrates the color mismatches of the right images relative to the left images in terms of mean differ-
ences and standard deviation differences for each channel in HSV color space in percentage. The results show
that the ODIs captured with the OmniCam have by far the larges color differences with a mean difference of
brightness of 19.77%, followed by the corridor sequence (Panocam) and the self-constructed rigs with Mobius
cameras. Most of the ODIs do only have a minor color mismatch between left and right view. However, we
noticed visible color mismatches when applying a toggle view between the left and right images.

The reason for this discrepancy is quite obvious. While the OmniCam, Panocam and Mobius rig capture left
and right ODIs independently, color differences between the views are inevitable as described in Section 2.
Furthermore, the OmniCam is actually a mirror rig and thus, it is more error-prone to lighting conditions at
different viewpoints. All the other ODIs were captured with an off-centered slit camera system as illustrated in
Figure 2, i.e. left and right ODIs are captured with the same cameras. Although the overall color differences

]https ://photocreations.ca/3D/mobius_camera_rig.html
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Figure 6: Color difference (mean and standard deviation) of the right image compared to the left image

for these cameras are small, the color differences between left and right images within a viewport of an HMD
are still existing as each stereo pair of the input images belong to different cameras.

5 Conclusion and future work

The paper described a modular system for artifact detection in stereoscopic omni-directional images within
the post-production, in particular the binocular rivalry issues: geometrical misalignment and color mismatch.
The algorithms were exemplary applied to a dataset of 13 stereoscopic ODIs captured with 7 different 360-
degree camera rigs. From the results, we can derive a couple of interesting properties and further challenges
which need to be addressed. First, vertical parallax seems to be a serious issue in stereoscopic ODIs as it is
much larger than in standard 3D cinema or 3DTV footage. Furthermore, capture devices which use independent
stereo camera pairs tend to have an even larger vertical parallax. We have to note again, however, that we do not
have any knowledge about the amount of post-production efforts spent for each of the ODIs under evaluation.
Secondly, global color mismatches between left and right ODI seem to be relatively small, except for the
capture devices which use independent stereo camera pairs like OmniCam-3D, Panocam and the Mobius rig.
However, visual inspection of the left and right ODIs often show significant local color mismatches. Thus,
more investigation of local color mismatches, i.e. within the viewports is necessary as this is the area which
the user actually sees and where binocular rivalry needs to be measured. The main challenges, however, are
heavy distortions within each ODI of a stereo pair, in particular stitching, blending and warping artifacts which
heavily degrade the dense disparity estimation results, and which affect the subsequent detection modules. One
could argue, however, that the modules should support an artist within the fine-stitching process in post. If the
distortions are too extreme for confident dense disparity estimation, the artist would probably notice this even
without the support of the detection modules and would try to fix it.

The natural evolution of the current work is the extension of the artifact detection tools to the view adapted
temporal dimension, i.e. the analysis of the viewports in stereoscopic 360-degree images and videos by also
considering saliency as introduced in [Ana De Abreu, Cagri Ozcinar, 2017]. Furthermore, we will extend the
system for the detection and possibly correction of other artifacts like e.g. sharpness mismatch. The modules
for visual mismatch and pseudo-3D detection are already implemented and under evaluation. Finally, we want
to motivate researchers from other research institutes to also focus on this research area in order to improve the
quality of 360-degree videos.
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