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Abstract—In this paper, we propose to extend the state-of-the-
art BM3D image denoising filter to light fields, and we denote
our method LFBM5D. We take full advantage of the 4D nature of
light fields by creating disparity compensated 4D patches which
are then stacked together with similar 4D patches along a 5th

dimension. We then filter these 5D patches in the 5D transform
domain, obtained by cascading a 2D spatial transform, a 2D angu-
lar transform, and a 1D transform applied along the similarities.
Furthermore, we propose to use the shape-adaptive DCT as the
2D angular transform to be robust to occlusions. Results show
a significant improvement in synthetic noise removal compared
to state-of-the-art methods, for both light fields captured with a
lenslet camera or a gantry. Experiments on Lytro Illum camera
noise removal also demonstrate a clear improvement of the light
field quality.

I. INTRODUCTION

Light fields aim to capture all light rays passing through a
given amount of the 3D space [1]. Compared to traditional
2D imaging systems which capture the spatial intensity of
light rays, a 4D light field also contains the angular direction
of the rays. We adopt in this paper the common two-plane
parametrization, and a light field can be formally represented
as a 4D function Ω × Π → R, (x, y, s, t) → L(x, y, s, t)
in which the plane Ω represents the spatial distribution of
light rays, indexed by (x, y), while Π corresponds to their
angular distribution, indexed by (s, t). Perhaps the easiest
way to visualize a light field is to consider it as a matrix
of views (see Fig. 1), also called sub-aperture images (SAI).
Each SAI represents a 2D slice of the light field over the
spatial dimensions (x, y). Another common representation of
light fields are Epipolar Plane Images (EPI), which are 2D
slices of the 4D light field obtained by fixing one spatial and
one angular dimension (sx- or yt-planes, see Fig. 1).

Applications of light field include refocusing of an image
after capture [2], rendering of virtual points of view [1],
[3], or depth estimation [4]. Many camera architectures have
been proposed to capture light fields, including gantry [5],
camera arrays [6], or more recently hand-held lenslet cameras
[2], [7]. However, light field captured with the latter cameras
exhibit visible noise artifacts. Thus light field noise removal
has become an important task for aesthetic purposes or as a
pre-processing step. Formally, we define the noisy light field
as follows:
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Fig. 1. Examples of light field representations: matrix of sub-aperture images
(SAI) (left); and Epipolar Plane Images (EPI) (right) shown below and on the
right of the center SAI.

Lnoisy = L+ η (1)

where L is the source light field that we want to reconstruct,
Lnoisy is the observed data, and η corresponds to Additive
White Gaussian Noise (AWGN) with variance σ2.

Several methods have been proposed in the past years to
address light field denoising [8]–[12], which benefit from the
very active research conducted on single image denoising
[13]–[19]. However, the best performing methods of the state-
of-the-art [12] are obtained by processing 2D slices of the light
field (SAI or EPI) stacked into a 3rd dimension, and do not
fully exploit the 4D structure of light fields.

In this paper, we propose to extend the BM3D filter [16],
which exploits natural local redundancies existing in natural
images, by taking into account the 2D redundancies occurring
over the angular dimensions of the light field. We first propose
to create 4D disparity compensated patches, which contain
highly redundant 2D patches, and stack them together with
similar 4D patches over a 5th dimension. The 5D patches
obtained in this fashion are then processed in the 5D trans-
form domain, where the underlying true signal is sparsely
represented. The 5D transform is a combination of a 2D
spatial transform, a 2D angular transform, and a 1D transform
applied on the 5th dimension corresponding to similarities. In
order to be robust to occlusions and maintain the sparsity
of the 5D spectrum, we propose to use the shape-adaptive
DCT (SADCT) as the 2D angular transform. Furthermore, our
method does not make assumption on the angular sampling



density, and performs equally on dense or sparsely sampled
light fields.

This paper is organized as follows. In section II we review
the existing work on light field denoising. Section III describes
more in detail the proposed LFBM5D approach. Finally, we
evaluate in section IV the denoising performances of our
approach against state-of-the-art methods.

II. BACKGROUND

A naive approach to light field denoising consists in ap-
plying existing image denoising methods to the SAIs inde-
pendently. We refer the reader to [18], [19] for a survey of
image denoising methods. To better take into account the
redundancies existing in-between the different SAIs, one can
instead process the EPIs. In [9], a two-step method is proposed
which first denoises EPIs taken along a given spatial and
angular dimension (e.g. sx-plane), and then processes this first
estimate using the complementary EPIs (e.g. (yt-plane).

However, these methods only consider 2D slices of the 4D
light field. To further exploit the inter-dependencies of the light
field, it is also possible to stack the SAIS or EPIs and filter
along this additional dimension. Among the existing methods,
the best denoising performances are thus obtained by applying
the VBM4D video filter [20] on such sequences [12].

Other methods propose to take into account the 4D structure
of the light field through a GMM light field patch prior
[8], variational regularization [10], or a global 4D transform
domain hyperfan filter [11], denoted HF4D in this paper.
Although these methods fully exploit the 4D structure of the
light field, they fail to outperform the VBM4D filter.

The VBM4D filter is an extension of the BM3D filter [16]
to video denoising. We refer the reader to [17] for a more
detailed analysis of the BM3D filter. As BM3D is still among
the best image denoising methods [18], we propose in this
paper to extend it to light fields, and we denote our approach
LFBM5D. We show that by fully taking into account the 4D
light field structure, we are able to significantly outperform
the best state-of-the-art methods.

III. LIGHT FIELD DENOISING IN THE 5D TRANSFORM
DOMAIN

In this section, we decribe our method called LFBM5D.
Note that we adopt notations similar to [17].

A. Overview

Our method follows the same two-step procedure as
BM3D: first a so-called basic estimate is obtained after hard-
thresholding the transform coefficients of the 5D patches, then
the basic estimate is used to perform a Wiener filtering in the
5D transform domain and produce the final denoised estimate.
The steps are denoted hard and wiener respectively.

To process the noisy light field Lnoisy , we iterate over the
sub-aperture images (SAIs). First a specific SAI, denoted as
the reference SAI, is selected. At initialization, we select the
central SAI of the light field. We then consider the neighboring
SAIs found in a so-called angular search window of size na×
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Fig. 2. The SAIs of a light field are iteratively processed by considering a
reference SAI and its neighboring SAIs in a so-called angular search window.
When processing SAIs in an angular search window, 4D patches are obtained
by taking disparity compensated 2D patches in the neighboring SAIs with
respect with a 2D patch in the reference SAI. 5D patches are finally built by
stacking similar 4D patches along a 5th dimension.

na, and filter all these SAIs together. For that purpose, we first
iterate over the 2D patches of the reference SAI. As explained
in the next section, 5D patches are created by combining 2D
patches of the reference SAI and the neighboring SAIs. Thanks
to the collaborative nature of the proposed filter, the reference
and neighboring SAIs are thus denoised at once. A second
iteration is usually necessary to process the few remaining
noisy pixels in the neighboring SAIs.

Once the current reference and neighboring SAIs are fully
processed, a new reference SAI is selected among the SAIs
remaining to denoise. The new reference SAI is chosen such
that it has the most neighboring SAIs remaining to denoise.
The process iterates until all SAIs in Lnoisy are denoised.
This main loop is used for both hard-thresholding and Wiener
filtering steps, and produces the basic estimate Lbasic and final
estimate Lfinal respectively.

In the next sections, we explain the different steps of the
filter in details.

B. Construction of 5D patches

For each 2D patch P of size k×k in the reference SAI Iref ,
a 5D patch is created by exploiting redundancies within Iref
and in-between Iref and its neighboring SAIs {Is,t}, (s, t) ∈
[[1, na]]× [[1, na]]. Note that to reduce the processing time, the
loop over the overlapping 2D patches in a SAI is done with a
step of p pixels in row and column.



1) 4D patch: First, a 4D patch is created by finding in
each neighboring SAI the 2D patch closest to P (see Fig.
2), which can be assimilated to a disparity compensation step
using a block matching algorithm. Formally, the 4D patch of
size na × na × k × k is defined as:

Pdisp(P ) = {Qs,t
disp : Qs,t

disp = arg min
Qs,t

d(P,Qs,t),

Qs,t ∈ SW s,t
disp,

d(P,Qs,t
disp) ≤ τdisp}

(2)

where d(P,Q) is the normalized quadratic distance between
patches, SW s,t

disp is a search window in Is,t of size ndisp ×
ndisp centered on the position of P (see Fig. 2), and τdisp is
the distance threshold for d under which patches are assumed
similar.

The goal of the threshold τdisp is to discard patches which
are not similar enough to the reference patch, and thus to be
robust to occlusions. Together with the disparity compensation,
it ensures the smoothness and homogeneity of 2D patches
taken along the angular dimensions (also called 2D angular
patches, see Fig. 2).

2) 5th dimension - self-similarities: We then search for the
set of patches similar to P in the reference SAI, defined by:

Psim(P ) = {Qsim : d(P,Qsim) ≤ τsim, Qsim ∈ SWsim}
(3)

where τsim is the distance threshold for d under which patches
are assumed similar, and SWsim is a search window in Iref
of size nsim×nsim centered on the position of P (see Fig. 2).
A maximum of N patches are retained in Psim(P ) in order
to limit the complexity.

Finally, the 5D patch of size na×na× k× k×N , denoted
P(P ), is then built by stacking along a 5th dimension the 4D
patches built from all patches similar to the reference patch
(see Fig. 2):

P(P ) = {Pdisp(Q) : Q ∈ Psim(P )} (4)

Note that for the Wiener filtering step, a first 5D patch
Pbasic(P ) is obtained from the basic estimate Lbasic, and a
second 5D patch P(P ) is then created by taking the collocated
patches in Lnoisy .

C. Collaborative filtering in the 5D transform domain

The collaborative property of the filter means that when a
2D patch P is processed, all the 2D patches constituting the
5D patch P(P ) are filtered together. The filter acts in the 5D
transform domain, and the filtered patches are obtained after
applying the inverse transform.

In the first step, hard-thresholding is applied on the 5D
transform coefficients of the patch:

P(P )hard = τhard
−1

5D (γ(τhard5D (P(P )))) (5)

where τhard5D is a 5D transform, γ is a hard-thresholding
operator with threshold λhard5D σ and σ2 is the variance of the
AWGN:

γ(x) =

{
0 if |x| ≤ λhard5D σ

x otherwise
(6)

For the second step, the hard-thresholding is replaced by a
Wiener filter, using the 5D patch Pbasic(P ) as a guide. The
empirical Wiener coefficients are defined by:

ωP (ξ) =
|τwien

5D (Pbasic(P ))(ξ)|2

|τwien
5D (Pbasic(P ))(ξ)|2 + σ2

(7)

where τwien
5D is a 5D transform, and σ2 is the variance of the

AWGN.
The Wiener collaborative filtering of P(P ) is then per-

formed as the element-wise multiplication of the 5D transform
of the noisy light field τwien

5D (P(P )) with the Wiener coeffi-
cients ωP . An estimate of the 5D patch is obtained as:

Pwien(P ) = τwien−1

5D (ωP · τwien
5D (P(P ))) (8)

The 5D transform consists in practice of three cascaded
transforms: a 2D transform denoted τs2D is applied on the spa-
tial dimensions of the 5D patch, followed by a 2D transform
denoted τa2D applied on the angular dimensions (see Fig. 3).
Finally, a 1D transform denoted τ1D is applied on the 5th

dimension of the 5D patch. The choice of these transforms
will be discussed in section III-E.

D. Aggregation

Once the collaborative filtering is done, we get an estimate
for each 2D patch belonging to a 5D patch, and thus multiple
estimates are obtained for each pixel. The final pixel estimate
is obtained as a weighted average of all estimates:

Lstep(x) =

∑
P

wstep
P

∑
Q∈P(P )

χQ(x)Lstep
Q,P (x)

∑
P

wstep
P

∑
Q∈P(P )

χQ(x)
(9)

where step can be either of the two steps, denoted hard of
wiener, Lstep

Q,P (x) is the estimate of the value of the pixel x
belonging to the 2D patch Q obtained during collaborative
filtering of the reference patch P , and χQ(x) = 1 if and only
if x ∈ Q, 0 otherwise.

For the hard-thresholding step, the aggregation weights are
obtained as:

whard
P =

{
(Nhard

P )−1 if Nhard
P ≥ 1

1 otherwise
(10)

where Nhard
P is the number of non-zero coefficient in the 5D

patch after hard-thresholding: γ(τhard5D (P(P ))).
For the Wiener filtering step, the aggregation weights are

computed as wwien
P = ‖ωP ‖−22 .
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Fig. 3. Example of a 4D transform spectrum (bottom right) obtained for a
4D patch (top left) taken from the LegoKnights light field. The 4D transform
is obtained by cascading a 2D spatial transform (bottom left) and a 2D
angular transform (top right). In this example the 2D DCT was used for
both transforms. Notice that the 4D transform spectrum is sparser than the
individual 2D transform spectra.

E. Choice of the 5D transform

As indicated in section III-C, the 5D transform is a combi-
nation of 2D transforms τs2D and τa2D applied on the spatial
and the angular dimensions respectively, and a 1D transform
τ1D applied on the 5th dimension corresponding to similarities.
The choice of these transforms has a strong impact on the
denoising performances and should be considered carefully.

For the choice of τs2D and τ1D, we rely on the analysis
carried out in [17]. The 2D spatial transform can either be a
normalized 2D DCT, or a bi-orthogonal spline wavelet denoted
Bior1.5, where the vanishing moments of the decomposing
and reconstructing wavelet functions are 1 and 5 respectively.
Better performance is achieved when the transform is different
for the hard-thresholding step and for the Wiener filtering step.
For the 1D transform, we choose the Haar wavelet.

One of the main advantages of the proposed filter compared
to existing work is that we can fully exploit the 2D angular
redundancies by applying τa2D over the angular dimensions of
the 5D patches. If we look at a 5D patch from the perspective
of its angular dimensions, we can consider that it consists of
k× k×N 2D angular patches of size na×na. Thanks to the
disparity compensated creation of the 5D patch, the 2D angular
patches are smooth and we thus obtain a sparse representation
in the 2D angular transform domain. By cascading the 2D
angular and spatial transforms, we finally obtain very sparse
representations of 4D patches, which are further compacted
when the 1D transform is applied over the 5h dimension. We
show in Fig. 3 an example of 2D angular and spatial transform
spectra obtained from a 4D patch. The 4D transform spectrum
obtained from the combination of the 2D transforms is clearly

sparser than the 2D transform spectra.
Note that the 2D angular patch smoothness is further

enforced by the threshold τdisp introduced in section III-B
to be robust to occlusions. However, this implies that some
2D angular patches may have a non-square shape. Thus, we
propose to use for τa2D the 2D shape adaptive DCT (SADCT).
This transform was first introduced for coding arbitrarily
shaped segment of images [21], and was later used for image
denoising [22]. The 2D SADCT can thus handle non-square
patches by applying 1D DCT transform of varying length on
the columns and then the rows of the patch.

F. Color light fields

As for the BM3D algorithm, color light fields are processed
by first transforming the noisy RGB SAIs to a lumimance-
chrominance space. The 5D patches are then created using
the luminance channel only. The collaborative filtering and
aggregation steps are then applied on each channel separately.
Finally, the denoised SAIs are returned to the RGB space.
We use in this paper the opponent color transformation (OPP)
proposed in [16].

IV. RESULTS

We discuss in this section the performance of the pro-
posed approach against relevant state-of-the-art methods. We
implemented our algorithm in C/C++ based on the BM3D
implementation of [17]1. Code and detailed results will be
available online2. We choose to compare to the hyperfan filter
applied on the global 4D transform domain [4], denoted HF4D,
independent denoising of the SAIs using the BM3D filter [16],
the two-step EPI denoising of [9] using the BM3D filter, and
the VBM4D filter applied on sequence of SAIs or EPIs [12].

A. Synthetic noise

We first study the denoising performances in the case of
synthetic AWGN. The experiments are conducted on a dataset
of twelve light fields from EPFL captured with a Lytro Illum
camera [23] and a second dataset of twelve light fields from
Stanford captured with a gantry [5]. For the EPFL dataset, the
15 × 15 SAIs of resolution 434 × 625 were extracted using
Dansereau’s Matlab light field toolbox [24]. Note that for the
Stanford dataset, the spatial resolution of the SAIs was cropped
to 512×512 pixels to speed up the experiments, but the angular
resolution of 17× 17 was maintained.

We set five noise levels, σ = 10, 20, 30, 40, 50, and the
parameters of our method are shown in Table I. For the BM3D
and VBM4D filters we use standard parameter values [17]
[20]. Additional parameters related to our method are tuned
empirically.

We evaluate the denoising performances using the PSNR.
For each light field the average PSNR is computed over all
SAIs. We give in Table II the average results for both the EPFL
dataset and the Stanford dataset. The line ∆PSNR corresponds

1http://www.ipol.im/pub/art/2012/l-bm3d/
2https://v-sense.scss.tcd.ie/?p=893

http://www.ipol.im/pub/art/2012/l-bm3d/
https://v-sense.scss.tcd.ie/?p=893


TABLE I
LFBM5D MAIN PARAMETERS

EPFL (Lytro Illum) Stanford (Gantry)
hard wiener hard wiener

na 3
k 16 8 16 8
N 1 8 8 16
p 3 3 4 4
ndisp 7 7 17 17
nsim 37
τdisp if σ ≤ 35 3000 2000 3000 2000
τdisp otherwise 5000
τsim if σ ≤ 35 3000 2000 3000 2000
τsim otherwise 5000
λhard5D 2.7 2.7
τs2D 2D Bior1.5 2D DCT None 2D DCT
τa2D 2D SADCT
τ1D Haar

TABLE II
AVERAGE DENOISING PERFORMANCES IN PSNR

σ=10 σ=20 σ=30 σ=40 σ=50
Method EPFL dataset (Lytro Illum)
HF4D [11] 31.070 25.798 22.607 20.338 18.586
BM3D [16] 35.421 32.852 31.357 30.247 29.321
BM3D EPI [9] 36.088 33.476 31.905 30.712 29.671
VBM4D [20] 36.075 33.522 31.923 30.674 29.630
VBM4D EPI [12] 36.129 33.510 31.925 30.719 29.721
LFBM5D 1st step 34.388 32.810 31.684 30.743 29.911
LFBM5D 2nd step 36.503 34.214 32.868 31.843 30.987
∆PSNR 0.374 0.692 0.943 1.124 1.266
Method Stanford dataset (Gantry)
HF4D [11] 30.577 25.432 22.213 19.921 18.164
BM3D [16] 38.805 35.268 33.126 31.560 30.267
BM3D EPI [9] 38.895 35.645 33.489 31.896 30.594
VBM4D [20] 39.269 35.588 33.212 31.436 30.019
VBM4D EPI [12] 38.697 35.604 33.558 32.026 30.809
LFBM5D 1st step 39.340 35.817 33.377 31.496 29.971
LFBM5D 2nd step 40.389 37.772 36.031 34.671 33.511
∆PSNR 1.120 2.127 2.473 2.645 2.701

to the PSNR gap between the proposed approach and the best
state-of-the-art method.

These results show a clear progression of the denoising
performance which increases with the extent to which the
light field structure is taken into account. Our approach clearly
outperforms the state-of-the-art methods for all noise levels,
with a notably significant improvement when the noise level
increases.

B. Lenslet camera noise removal

In the previous section, we added synthetic noise to light
fields in order to compute objective measures where the input
light field is considered as ground truth. However, light fields
captured with a lenslet camera such as the Lytro Illum already
exhibit camera noise. In this section, we apply our approach
to the light fields from the EPFL dataset in order to remove
such noise.

Visual results are displayed in Fig. 5 for three light fields
from the EPFL dataset. In the top row, we show one SAI from
each input light field, where the camera noise patterns and
dead pixels are clearly visible. In the bottom row, we present
the results after applying our denoising method, which clearly
reduces the camera noise and removes the dead pixels while
preserving fine details and edges.

Source: LegoKnights Noisy input, σ = 40
from the Stanford dataset PSNR = 16.09 dB

VBM4D output LFBM5D output
PSNR = 32.20 dB PSNR = 35.96 dB

Fig. 4. Visual results of denoising with AWGN on the center SAI of a light
field. (Best viewed in color and zoomed)

TABLE III
AVERAGED ESTIMATED NOISE LEVEL [25] FOR THE EPFL DATASET

Method Input VBM4D EPI VBM4D LFBM5D
σest ∗ 100 84.1 28.3 6.9 6.0

In order to quantify the noise reduction, we perform blind
noise level estimation [25] before and after denoising. We
compare our own approach against the two best state-of-the-art
methods, the VBM4D filter and the VBM4D applied on EPIs
[12]. We give in Table III the estimated values of the noise
variance σest averaged over the dataset, which demonstrate
that our method performs a better noise reduction than state-
of-the-art methods.

V. CONCLUSION

In this paper, we introduced the LFBM5D filter, which
extends the principles of the BM3D filter to light field de-
noising. By creating disparity compensated 4D patches which
are stacked together with similar 4D patches along a 5th

dimension, we obtain in the 5D transform a very sparse
representation where the noise is well separated from the
underlying signal and can be efficiently filtered. The 5D
transform is obtained by cascading a 2D spatial transform,
a 2D angular transform, and a 1D transform over the 5th

dimension. We propose to use the SA-DCT for the 2D angular
transform in order to be robust to occlusion and enforce the
sparsity in the transform domain. As our method fully exploits
the 4D structure of the light field and the self-similarities
existing in natural images, we are able to outperform the
states-of-the-art methods for light fields captured with different
camera configurations.

In future work we intend to exploit the disparity values
estimated during the creation of the disparity compensated 4D



Input light fields from the EPFL dataset
Color chart ISO chart Magnets

Light fields denoised with LFBM5D

Fig. 5. Visual results of LFBM5D denoising (bottom row) applied on light fields captured with the Lytro Illum camera [23] (top row). Notice that the
overall camera noise pattern, especially visible on light fields captured in low light conditions such as Magnet, is considerably reduced, while preserving high
frequency and fine details, e.g. on ISO chart. Dead pixels, especially visible in Color and ISO charts, are also removed. (Best viewed in color and zoomed)

patches, in order to create depth maps from noisy light fields,
which is a challenging task. The choice of the transforms used
to create the 5D transform is crucial, and we plan to explore
other 2D angular transforms, such as edge-avoiding wavelets
or graph Fourier transforms [26]. Finally, the improved de-
noising performance of our method comes at the price of
an increased complexity. We also aim to study in details the
complexity in order to reduce it.
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