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Figure 1: Saliency-based sharpness mismatch detection using Voronoi patches.

ABSTRACT
In this paper, we present a novel sharpness mismatch detection
(SMD) approach for stereoscopic omnidirectional images (ODI)
for quality control within the post-production workflow, which
is the main contribution. In particular, we applied a state of the
art SMD approach, which was originally developed for traditional
HD images, and extended it to stereoscopic ODIs. A new efficient
method for patch extraction from ODIs was developed based on
the spherical Voronoi diagram of evenly distributed points on the
sphere. The subdivision of the ODI into patches allows an accurate
detection and localization of regions with sharpness mismatch. A
second contribution of the paper is the integration of saliency into
our SMD approach. In this context, we introduce a novel method
for the estimation of saliency maps from viewport data of head-
mounted displays (HMD). Finally, we demonstrate the performance
of our SMD approach with data collected from a subjective test
with 17 participants.
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1 INTRODUCTION
Virtual Reality (VR) is the next step in consumer electronics pro-
viding a more immersive experience than ever before. VR content
development has focused on gaming, where the use of headsets to
create more immersive experiences is a natural extension of the
medium. For VR to evolve though it has to look beyond gaming
to attract a wider audience, and Filmmakers are grabbing this op-
portunity to tell their stories in new and imaginative ways and to
draw audiences into their worlds. The challenge outside of gaming
is to provide a steady stream of quality content to attract audiences.
Shooting a live action immersive 360-degree experience, i.e. omnidi-
rectional images or 360-videos, is not only a technological challenge,
but requires the whole production chain to be revolutionized from
set construction to acting, from directing to post production.

Capturing 360-videos is not an easy task as there are many tech-
nical limitations which need to be overcome, especially for captur-
ing and post-processing in stereoscopic 3D (S3D). In general, such
limitations result in artifacts which cause visual discomfort when
watching the content with a head-mounted-display. The artifacts or
issues can be divided into three categories: binocular rivalry issues
(e.g. sharpness and color mismatch, geometrical misalignment, etc.),
conflicts of depth cues (e.g. stereopsis vs. perspective, vergence vs.
accommodation, etc.) and artifacts which occur in both monocular
and stereoscopic 360-degree content production (e.g. stitching and
blending artifacts) [17].

With respect to binocular rivalry issues, this paper introduces a
novel system and workflow for sharpness mismatch detection in
ODIs for quality control within the post-production workflow, i.e.
to give automatic feedback to artists and reduce time and efforts in
post, which is the main motivation of this paper. In particular, we
applied the state of the art SMD approach by Liu et al. [21], which
was originally developed for traditional HD images, and extended it
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to stereoscopic ODIs, which is the first technical contribution of this
paper. The method in [21] estimates a sharpness mismatch score
by measuring width deviations of edge pairs in stereoscopic views
located at different depth planes. One important component of the
extension is a new method for the extraction of patches from the
ODIs based on the spherical Voronoi diagram [1]. In our approach,
Liu et al.’s method is applied to each patch independently, and
then the patches with sharpness mismatch including the SM scores
are visualized using a color coded representation as illustrated in
Figure 1. Besides the extension to ODI, we also integrated saliency
in the quality control workflow in order to weight the appearance of
sharpness mismatch dependent on the visual attention of end-users
who only see a small portion of the entire ODI using their HMDs,
i.e. the viewport.

We first explain how saliency can be used in order to weight re-
gions according to it. Then, we introduce a newmethod for saliency
estimation from viewport data of HMDs, which is the second tech-
nical contribution of this paper. A subjective test with 17 subjects
was organized in order to collect viewport data while the test sub-
jects were looking at stereoscopic ODIs. With this data the saliency
maps of the ODIs were computed. We then analyzed these images
with the extension of Liu et al.’s method in order to demonstrate
the performance of our proposed approach.

The paper is structured as follows. In Section 2, related work
in quality assessment, artifact detection, and saliency estimation
is reviewed. Then, in Section 3, we describe the state of the art
approach for SMD presented in [21] which we extended to ODIs by
applying the spherical Voronoi diagram and by integrating saliency
for weighting the importance of the artifacts. In Section 4, we
describe the subjective test which we carried out to estimate the
saliency maps of ODIs. Results for demonstrating the performance
of our proposed method are presented in Section 5. Finally, in
Section 6, the paper concludes with a discussion and future work.

2 RELATEDWORK
2.1 Quality assessment and artifact detection
Over the last years, binocular rivalry issues and conflicts of depth
cues have been investigated in detail for standard S3D content
e.g. for cinema screens and 3D-TV [18, 20, 27]. Many publications
focused on the assessment of 3D quality in terms of subjective
and objective quality metrics. In [16], the authors investigated how
viewer annoyance depends on various technical parameters such as
vertical disparity, rotation and field-of-view mismatches as well as
color and luminance mismatches between the views. In [9], a stereo
camera distortion detecting method based on statistical models was
presented in order to detect vertical misalignment, camera rotation,
unsynchronized zooming, and color misalignment in native S3D
content. The authors of [11] introduced a full-reference quality
assessment metric for stereoscopic images based on the perceptual
binocular characteristics. The proposed metric handles asymmetric
distortions of stereoscopic images by incorporating human visual
system characteristics. Finally, in [2], a full-reference metric was
presented by evaluation of a large variety of measures by taking
2D picture quality, binocular rivalry and depth map degradation
into account. The authors maximized the correlation with the mean
opinion score (MOS) by using linear regression.

In this paper, however, the focus lies on artifact detection in
order to support the artist by giving direct quality feedback dur-
ing post-production, in particular for sharpness mismatch. Thus,
full-reference objective quality metrics can not be applied in this
context. In [24], the authors explored the relationship between the
perceptual quality of stereoscopic images and visual information,
and introduced a model for binocular quality perception. Based on
this model, a no-reference quality metric for stereoscopic images
was proposed. The proposed metric is a top-downmethod modeling
the binocular quality perception of the human visual system (HVS)
in the context of blurriness and blockiness.

A large variety of artifact detectionmethods, including sharpness
mismatch, was introduced in [28] and [4]. For SM the two papers
proposed approaches that first apply dense disparity estimation and
then analyze high-frequency differences between both views [28]
or analyze differences of edges using a gradient-based approach [4].
For measuring in-picture sharpness, different 2D metrics have been
developed. In [10], a new perceptual no-reference image sharpness
metric based on the notion of just noticeable blur (JNB) was intro-
duced. The proposed metric is able to predict the relative amount
of blurriness in images with different content. Furthermore, the
authors showed that the HVS masks blurriness around an edge up
to a certain threshold. An ideal metric is the cumulative probability
of blur detection (CPBD) metric [23], as it outperforms most other
no-reference sharpness metrics on Gaussian blur. It was developed
based on human blur perception at different contrasts. However,
none of the related work focused on 3D artifact detection in ODIs.
To our knowledge only the work in [17] focused on 3D quality
assessment methods that deal with ODIs. The authors analyzed
vertical misalignment and global color mismatch in ODIs using
the equirectangular presentation, but no sharpness mismatch was
analyzed.

2.2 Saliency
Saliency can be predicted usingmodels of visual attention. In the last
20 years many saliency models have been proposed for traditional
2D images [13]. The focus of thesemodels is on the different features
that motivate visual attention towards a particular target location.
The visual features can be classified as low level features (color,
intensity, orientation) [14, 15] and high level features (face [26]
and object [7] detection, image-center prior [15]). The extracted
features can be linearly combined [14] or integrated using learned
weights [26, 29]. More recently, models using deep neural networks,
trained for object recognition, have shown impressive performance
in predicting visual attention [12, 19]. However, these models may
not suit the specificities of 360-video.

In [5], a saliency model for panoramic images (cylindrical ODIs)
was proposed, where conventional saliency models are used on the
planar representation of the ODIs. In [3], a spherical saliency model
was presented, where different visual features were computed on
the sphere. However, these works are based on a model that only
considers low level features. Most recently, the authors of [8] esti-
mated saliency maps for ODIs viewed with HMDs, when the use of
an eye tracker device is not possible. They collected viewport data
of 32 participants for 21 ODIs and proposed a method to transform
the gathered data into saliency maps.
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Figure 2: Overview of the sharpness mismatch approach

(a) Spherical Voronoi diagram. (b) Spherical Voronoi diagram
mapped into the ERP format.

Figure 3: Patch extraction.

3 PROPOSED METHOD FOR SMD
To detect sharpness mismatch in an ODI, we first divide its spheri-
cal representation into patches, map the spherical patches into the
equirectangular projection (ERP), extract these patches from the
stereoscopic ERP image, process each patch independently using
the approach proposed by Liu et al. [21], and finally highlight the
patches with SM using a color coded representation as illustrated
in Figure 1. Figure 2 gives a schematic overview of the proposed
SMD approach. The three blocks: Voronoi Patch Extraction, Sharp-
ness Mismatch Detection and Visual Feedback are detailed in the
following subsections.

3.1 Voronoi patch extraction from ODIs
To extract approximately equally sized patches from the ODI, first
evenly distributed points are computed on the sphere, and then the
spherical Voronoi diagram [1] is computed from them. Each cell
of the computed Voronoi diagram corresponds to a patch. Figure 3
shows the spherical Voronoi diagram computed from 30 evenly
distributed points on the sphere, and its projection into the equirect-
angular format.

For the computation ofn evenly distributed points Pi = (Xi ,Yi ,Zi )
with i = 0 . . .n − 1 on the sphere, we implemented a method based

on the following equations:

θi = iπ ·

(
3 −

√
5
)
, (1)

Zi =

(
1 −

1
n

)
·

(
1 −

2i
n − 1

)
, (2)

di =

√
1 − Z 2

i , (3)

Xi = di · cos(θi ) and (4)
Yi = di · sin(θi ), (5)

where θi is the azimuthal angle and di is the distance of the point
from the z-axis.

The spherical Voronoi diagram is computed based on the evenly
distributed points Pi , and it basically consists of partitioning the
surface of the sphere into cells for each point Pi . Each Voronoi cell
VCi defines the region on the surface of the sphere ΩS containing
all points which are closer to the corresponding point Pi than to
any of the other evenly distributed points Pj :

VCi = {P ∈ ΩS | dS (P, Pi ) ≤ dS (P, Pj ) ∀j , i}, (6)

where dS (P, Pi ) is the spherical distance between the current point
P and the point Pi , i.e., the length of the shortest path on the surface
of the sphere connecting these two points.

For each Voronoi cell the centroid that defines the orientation of
the patch’s image plane is computed, and then the patch is mapped
onto the surface of the ERP image. The resolution of each patch
is defined by the pixels per visual angle, a parameter that is kept
constant for each patch.

During the mapping of the spherical patch of the ODI into the
ERP format, the pixel colors are obtained by sampling the ODI in
ERP format using bilinear interpolation.

The number of patches and thus the size of each patch has an
impact on the localization of SM. The larger the patch size is, the
more difficult it is to detect and localize SM if it only appears in
small areas of the ODI. We empirically found out that 30 patches is
a good number for the localization of SM.

3.2 Sharpness Mismatch Detection
Each of the patches computed in the previous section is now ana-
lyzed individually using the SMD approach introduced by Liu et
al. [21], which was originally developed for traditional HD images.
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The approach first estimates the horizontal disparity maps of a
stereoscopic image pair from the left view to the right view, and vice-
versa. Since the disparity estimation can be noisy and inaccurate,
only disparity values are considered which are consistent in both
disparity maps. If DML2R and DMR2L are the two disparity maps,
then the disparity at pixel (x ,y) in DML2R is valid if

|DML2R (x ,y) + DMR2L(x − DML2R (x ,y),y)| ≤ δ , (7)

where δ is a predefined threshold.
In parallel to the disparity estimation and validation process,

edges are extracted in the two views using the Canny edge detector
[6]. The analysis is then conducted from the view whose patch
contains more edge pixels, i.e., from the sharper view. The edge
pixels are then segmented at different disparity levels and only the
disparity levels with enough edge pixels are further processed. A
disparity level is "edge-significant" if the number of edge pixels on it
is larger than 5% of the average amount of edge pixels per disparity
level. The edge pixels in the two views are then matched and the
edge width is estimated. The edge width is computed perpendicu-
larly to the edge orientation using the method described in [22]. For
each matched edge pixel pair pdj in disparity level d , a sharpness
mismatch criteria Csm (pdj ) based on the edge width, edge contrast,
and edge disparity is evaluated in order to decide whether sharp-
ness mismatch exists or not. For each "edge-significant" disparity
level, the percentage of matched edge pixel pairs with sharpness
mismatch is estimated as follows:

Pdsm =
1
Nd

Nd∑
j=1

1Csm (pdj )
, (8)

where Nd is the number of matched edge pixel pairs in the same
disparity level d . 1Csm is an indicator function based on the SM
criteria Csm , which is equal to one if the SM criteria Csm is met,
and zero otherwise. The final score for the probability of sharpness
mismatch PSM is obtained by averaging the Pdsm of the "edge-
significant" disparity levels as follows:

PSM =
1
N

N∑
k=1

P
dk
sm , (9)

where N is the total number of "edge-significant" disparity levels,
and dk is the index of the k-th "edge-significant" disparity level.

3.3 Integration of Saliency
Saliency estimation is the process of analyzing an image to iden-
tify regions of high visual attention, i.e., regions that attract the
attention of the human visual system. Saliency values for each pixel
in an image are usually stored in a so called saliency map. As the
end-users are free to navigate within an ODI, the saliency map rep-
resents the likelihood of the viewer’s viewport location in the ODI.
The saliency map is useful in order to identify regions that should
have a high visual quality, i.e., regions that should be free from
artifacts (e.g. sharpness mismatch) where end-users are actually
looking at.

Saliency was integrated in Liu et al.’s method [21] described in
Section 3.2 by weighting each pixel p based on its saliency ψ (p).
While processing an image, the idea is to give more weight to pixels
with high visual attention of the end-users, and less weight to pixels

Figure 4: Projections of the viewport (left) and of the Gauss-
ian filter (right) into the ERP format.

with low visual attention. In order to give more control to the artist,
the pixel saliency weight is defined as the function д′(ψ (p)), which
can be freely chosen. In this way, the artist can decide whether
to ignore the saliency by choosing a constant д′, or to completely
ignore the pixels with a saliency lower than a threshold, by setting
the weight of these pixels to zero.

Based on saliency, Liu et al.’s method was modified in two com-
ponents: the selection of the "edge-significant" disparity levels and
the computation of the percentage of matched edge pixel pairs with
sharpness mismatch defined by Equation 8. In the modified method,
a disparity level d is "edge-significant", if the sum of the saliency
weights д′(ψ ) at the edge pixels in d is larger than 5% of the average
amount of saliency weights at the edge pixels per depth plane. The
second modification affects Equation 8 as follows:

Pdsm =
1∑Nd

j=1 д
′(ψ (pdj ))

Nd∑
j=1

1Csm (pdj )
д′(ψ (pdj )), (10)

where д′(ψ (pdj )) is the weighting function mentioned before with
ψ (pdj ) equal to the saliency of the j-th matched edge pixel pair at
the disparity level d .

For ODIs, Liu et al.’s method is applied independently for each
patch. In order to compute the global score of the ODI, the patch
scores PSMi can be combined using the average pixel saliency Ψi
inside each patch i . The ODI global score is then defined as follows:

PSMдlobal =

∑
i д

′′(Ψi ) PSMi∑
i д

′′(Ψi )
, (11)

where д′′ is another function, which similarly to д′, can be freely
chosen by the artist, giving him the freedom to decide how different
saliency values affect the global score.

Another useful global score is the total amount of patches with
sharpness mismatch. The patch saliency Ψi can also be integrated
in this score as follows:∑

i
1д′′(Ψi )PSMi ≥ρ , (12)

where ρ is a user-defined threshold.
For the generation of the results in Section 5, д′ and д′′ are

piece-wise linear functions, which are defined as

д′(x) = д′′(x) =

{
5x , x ≤ 0.2,
1, x > 0.2, (13)

i.e., pixels and patches with a saliency of more than 20% have a full
weight when calculating the scores.



Sharpness Mismatch Detection For S3D ODIs CVMP 2017, December 11–13, 2017, London, United Kingdom

(a) ERP input image.

(b) Saliency map.

(c) Combination of the ERP input image and the saliency map.

Figure 5: Example of a saliency map.

3.4 Computation of the saliency map
For the computation of the saliency maps in the ERP format, we
implemented an alternative method to the one by De Abreu et
al. [8], which was developed originally for monocular ODIs. The
new method computes a saliency map from a sequence of HMD
viewport positions recorded while a viewer is freely looking at an
ODI. For each viewport position, a filter kernel centered on the
viewport and defined by its dimension, is projected onto the ERP
image. The projections of the filter kernels are then added in order
to obtain the final saliency map.

In our approach, we use the Gaussian filter centered on the
viewport, due to the fact that visual acuity is at its maximum at
the center of the human visual field, i.e. the viewer tends to look at
the center of the viewport rather than at the borders. The Gaussian

Figure 6: Color-based visualization of the patch scores.

filter is defined as follows:

h (u,v) = e
− 1

2

(
u2
σ 2
u
+ v2
σ 2
v

)
(14)

where (u,v) are pixel coordinates centered on the HMD viewport,
whileσu andσv control the horizontal and vertical filter size and are
related to the field of view and the resolution of the HMD viewport.
Figure 4 shows five projections of the viewport and of the Gauss-
ian filter defined on the viewport into the ODI in equirectangular
format.

Figure 5 shows an example of a saliency map of a stereoscopic
ODI obtained from HMD viewport data.

3.5 Visualization of Sharpness Mismatch
Once the sharpness mismatch scores for each patch are computed
using Equation 9, the patch scores can be visualized directly on the
ERP image. Different colormaps can be applied in order to assign a
color to a scalar. In the results presented in this paper we used the
jet colormap, which assigns blue to 0, red to the maximum possible
score, i.e. 1, and green to 0.5.

Figure 6 illustrates an example of the visualization of patch
scores on an ODI with sharpness mismatch using the jet colormap.
Additionally, the PSM scores can be displayed directly within each
patch to further substantiate the SM analysis for the artist.

4 SUBJECTIVE EXPERIMENT
In order to compute the saliency maps of stereoscopic ODIs us-
ing the method described in the previous section, we organized
a subjective test similar to the one described in [8]. During the
experiment, the participants were asked to freely look at stereo-
scopic ODIs while wearing an HMD, in our case an Oculus Rift
DK2. While the subjects were looking at the images we recorded
the viewport center locations on each of the ODIs, assuming that
the center point of the viewport corresponds to the visual target
location of the user. As explained in [8], this assumption is based
on the fact that visual acuity is at its maximum at the center of the
human visual field (fovea), and that the head tends to follow the
eye movements to preserve the eye resting position (eyes looking
straight ahead).

The test was divided into a training session and a test session.
During the training session the subjects got familiar with the exper-
iment, while a demo image was displayed. During the test session a
set of ODIs were displayed in random order using the software appli-
cation introduced in [8] which was modified to display stereoscopic
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ODIs. For cross-platform compatibility reasons, the application was
implemented using the WebVR and the ThreeJS APIs, so that it can
run with different HMDs on different web browsers. The applica-
tion is able to collect viewport information at the refresh rate of
the HMD. For Oculus Rift DK2 the maximum refresh rate is 75 Hz,
meaning 13.33 ms per frame.

Each image was displayed for 15 seconds, and similarly to [8],
the data captured during the first second was discarded, as it adds
trivial information on the starting viewing direction. A total of 17
subjects with normal stereo vision took part in the test. In order to
keep anonymity we assigned an identifier to each of them. The ODIs
used in the test were collected from different sources, mainly from
YouTube, with resolutions ranging from 1920x960 to 4640x2320
pixels.

The resulting saliencymaps of 10 ODIs analyzed in the subjective
test are presented in the Figures 8 and 9.

5 RESULTS
In order to test our proposed method we took a stereoscopic ODI
without SM and blurred a selected region of the left ODI with a
Gaussian filter as proposed in [25], where it was shown that defocus-
based effects of lens aberrations can be modeled with Gaussian blur.
Figure 7 shows the blur mask, the blurred left ERP image and the
visualization of the patch SM scores using the jet colormap. The
figure shows high patch SM scores in the center of the blurred
region, which decrease with the distance to the center. Thus, our
approach correctly detects and localizes the SM.

As mentioned in Section 4, we performed a subjective test with
ODIs in order to compute their saliency maps. These ODIs were
then evaluated with our proposed SMD method. Figures 8 and 9
show 10 ODIs, together with their saliency maps and the results
of the SM analysis. The saliency maps show that the test subjects
tended to look at the equator of the ODIs rather than at the pole
caps. Moreover, high-level features like the bear in ODI 2 and the
gun shot in ODI 5 attracted the visual attention of the subjects.

In Figure 8, we illustrate 4 stereoscopic ODIs with sharpness
mismatch, while Figure 9 shows the remaining 6 stereoscopic ODIs
without detected sharpness mismatch. Furthermore, for each of
the 10 ODIs we computed the amount of patches with detected
sharpness mismatch and the global SMD scores. The results are
illustrated in two diagrams in Figure 10. The first diagram shows the
amount of patches with detected sharpness mismatch obtained with
Equation 12, where the threshold ρ was set to 0.2, and д′′ is defined
by Equation 13. As can be seen in this diagram, SM was correctly
detected in the first 4 ODIs, while in the remaining ones the analysis
didn’t detect any patches with SM. The second diagram in Figure 10
shows the global scores computed with Equation 11. ODI 1 and
ODI 4, which have the highest number of detected patches with
sharpness mismatch, have the highest global SMD scores. In ODI 4
two patches with stitching and blending artifacts introducing SM
were correctly identified (see close-up in Figure 8). ODI 2 has also a
high global score and it is characterized by one patchwith SM. ODI 3
has a lower global score than ODI 2, nevertheless our approach
detected sharpness mismatch in a patch which has different glares
in the left and right image (see close-up in Figure 8). Although no
patch was detected with sharpness mismatch in ODI 8, the global

(a) Blur mask.

(b) Blurred left ERP image.

(c) Visualization of SM.

Figure 7: Results of our SMD method using Gaussian blur.

SMD score is above average. This indicates that the entire ODI has
some sharpnessmismatch, but none of the individual patches passed
the defined threshold. The remaining ODIs don’t have patches with
SM and also have relatively low global scores.

6 CONCLUSIONS
This paper presented a novel sharpness mismatch detection ap-
proach for ODIs that analyzes patches derived from the spherical
Voronoi diagram. In this context, we took the method proposed by
[21] and extended it to ODIs using a patch-based approach. The SM
scores of each patch are visualized using a color coded representa-
tion directly in the ERP image in order to give automatic feedback
of potential sharpness mismatch between the left and right images
to artists in post-production.

Besides this, the paper also introduced saliency in SMD. We
described how saliency can be applied by weighting each pixel.
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Figure 8: Examples of ODIs with sharpness mismatch.

For the computation of the saliency maps of stereoscopic ODIs,
we presented an alternative to De Abreu et al.’s approach [8]. Our
alternative approach is based on filtering viewport data with a
Gaussian filter, and was then applied to 10 ODIs tested during a
subjective experiment with 17 participants.

In order to demonstrate the performance of the proposed SMD
approach, we first added blur to a region of the left ODI of a stereo-
scopic ODI without SM. The results demonstrated that SM could
be properly detected with our method. Then, we analyzed 10 ODIs
as presented in Section 5. The results demonstrated that existing
artifacts could be detected in four of these ODIs. However, only
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Figure 9: Examples of ODIs without sharpness mismatch.

(a) Number of patches with SM. (b) Global SMD scores.

Figure 10: SM patch detection and global SM scores
PSMдlobal .

two of them contained SM while the other two had other binocu-
lar rivalry issues (glares and stitching artifacts), i.e., the proposed
method for SMD is sensitive to artifacts which can be interpreted
as SM. Moreover, the proposed method increases the efficiency in
post-production workflows, by drawing the artist’s attention to
binocular artifacts, which was one of the motivations of this work.

In our future work, we will analyze a larger dataset of ODIs by
computing new saliency maps and by applying the proposed SMD
method. Furthermore, we will present a new method for SMD and
compare it to Liu et al.’s method. Finally, we will extend our system
to detect and, if possible correct, SM and other artifacts like e.g.
color mismatch using our patch- and saliency-based approach as
introduced in this paper.
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