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ABSTRACT

In this paper, we present a novel framework for quality con-
trol in cinematic VR (360-video) based on Voronoi patches
and saliency which can be used in post-production workflows.
Our approach first extracts patches in stereoscopic omnidi-
rectional images (ODI) using the spherical Voronoi diagram.
The subdivision of the ODI into patches allows an accurate
detection and localization of regions with artifacts. Further,
we introduce saliency in order to weight detected artifacts ac-
cording to the visual attention of end-users. Then, we propose
different artifact detection and analysis methods for sharpness
mismatch detection (SMD), color mismatch detection (CMD)
and disparity distribution analysis. In particular, we took two
state of the art approaches for SMD and CMD, which were
originally developed for conventional planar images, and ex-
tended them to stereoscopic ODIs. Finally, we evaluated the
performance of our framework with a dataset of 18 ODIs
for which saliency maps were obtained from a subjective test
with 17 participants.

Index Terms— 360 video, omnidirectional images, 3D
quality assessment, sharpness mismatch detection, color mis-
match detection, depth distribution, saliency, virtual reality

1. INTRODUCTION

Shooting a live action immersive 360-degree experience, i.e.
omnidirectional images (ODIs) or 360-videos for cinematic
VR, is a technological challenge as there are many technical
limitations which need to be overcome, especially for captur-
ing and post-processing in stereoscopic 3D (S3D). In general,
such limitations result in artifacts which cause visual discom-
fort when watching the content with a head-mounted-display
(HMD). The artifacts or issues can be divided into three cate-
gories: binocular rivalry issues, conflicts of depth cues and
artifacts which occur in both monoscopic and stereoscopic
360-degree content production [10].

This paper introduces a novel framework for sharpness
mismatch detection (SMD), color mismatch detection (CMD)
and disparity distribution analysis in ODIs which can be used
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for quality control in post-production workflows, i.e. to give
automatic feedback to artists and supervisors for reduced ef-
forts and improved quality. Our proposed system is divided
into a pre-processing step and an artifact detection and anal-
ysis step. The pre-processing step consists of three compo-
nents: patch extraction, saliency estimation and dense dispar-
ity estimation. As global methods for artifact detection are
often not suitable for ODIs, and to better localize and visual-
ize artifacts, we introduce a novel patch extraction approach
which is based on the spherical Voronoi diagram [1]. Besides
the patch extraction, we also integrate saliency, here visual
attention, in the quality control framework in order to weight
artifacts depending on the visual attention of end-users who
only see a small portion (viewport) of the entire ODI using
their HMDs. A saliency-based artifact weighting may reduce
post-production efforts as artifacts in low salient regions (i.e.
regions with little attention) might not need to be corrected.
Our new saliency estimation method is applied to viewport
data of 18 ODIs which we obtained from a subjective test
with 17 subjects.

For the actual artifact detection and analysis step, we use
the pre-processed data to apply SMD, CMD and disparity
distribution analysis of the scene. In particular, we applied
the state of the art SMD approach by Liu et al. [13], which
was originally developed for planar images, and extended it
to stereoscopic ODIs. For the detection of color mismatch,
we compare color properties between corresponding patches
of the left and right views of the ODI using the color statistics
introduced in [17]. Finally, we estimate the disparity distribu-
tion and higher order statistics like skewness and kurtosis in
order to give feedback regarding the scene depth.

The paper is structured as follows. In Section 2, related
work in quality assessment and artifact detection is reviewed.
Then, in Section 3, we describe the proposed system for SMD,
CMD and disparity distribution analysis. Results, which show
the performance and usability of our proposed system with
some examples, are presented in Section 4. Finally, in Sec-
tion 5, the paper concludes with a discussion and future work.

2. RELATED WORK

Over recent years, binocular rivalry issues and conflicts of
depth cues have been investigated in detail for planar S3D



Fig. 1: Overview of the quality control system

content e.g. for cinema screens and 3D-TV [11, 20, 12, 19].
Many publications focused on the assessment of S3D qual-
ity in terms of subjective quality tests and objective quality
metrics. In [9], the authors investigated how viewer annoy-
ance depends on various technical parameters such as geo-
metrical misalignments as well as color and luminance mis-
matches between the views. The authors of [4] proposed sev-
eral objective metrics for luminance mismatch and evaluated
their correlation with the results of subjective experiments. In
[6], a method for detecting stereo camera distortions based
on statistical models was presented in order to evaluate ver-
tical misalignment, camera rotation, unsynchronized zoom-
ing, and color mismatch in S3D content. Finally, in [2], a
full-reference metric was presented based on a large variety
of measures taking 2D picture quality, binocular rivalry and
depth map degradation into account. The authors maximized
the correlation with the mean opinion score (MOS) by using
linear regression.

In this paper, however, the focus lies on disparity analysis
and artifact detection in order to provide direct feedback to the
artist regarding the S3D quality during post-production. Thus,
full-reference quality metrics can not be applied in this con-
text. In [18], the authors explored the relationship between
the perceptual quality of stereoscopic images and visual infor-
mation, and introduced a model for binocular quality percep-
tion. Based on this model, a no-reference quality metric for
stereoscopic images was proposed which models the binocu-
lar quality perception of the human visual system (HVS) in
the context of blurriness and blockiness.

A large variety of artifact detection methods, including
methods for the detection of sharpness mismatch (SM) and
color mismatch (CM), were introduced in [21] and [3]. For
SM the two papers proposed approaches that first apply dense
disparity estimation and then analyze high-frequency differ-
ences between both views [21] or analyze differences of edges
using a gradient-based method [3]. For measuring in-picture
sharpness, different 2D metrics have been developed. In [7], a
new perceptual no-reference image sharpness metric based on
the notion of just noticeable blur (JNB) was introduced. The
proposed metric is able to predict the relative amount of blur-
riness in images with different content. Furthermore, the au-
thors showed that the HVS masks blurriness around an edge
up to a certain threshold. An ideal metric is the cumulative

probability of blur detection (CPBD) metric [16], as it out-
performs most other no-reference sharpness metrics on Gaus-
sian blur. It was developed based on human blur perception
at different contrasts. For CM, the authors of [21] use the re-
sults of the disparity estimation to reconstruct one view from
the other and compare the colors from the original and the re-
constructed view based on the mean square error in the RGB
color space.

However, none of the related work focused on S3D arti-
fact detection in ODIs. To our knowledge only the work in
[10] focused on S3D quality assessment methods that deal
with ODIs. The authors analyzed vertical misalignment and
global color mismatch in ODIs using the equirectangular pro-
jection (ERP), but did not consider sharpness mismatches or
the disparity distribution [15] which may also influence the
perceived S3D quality.

3. PROPOSED SYSTEM

Figure 1 gives a schematic overview of the proposed quality
control system. It consists of a pre-processing step, which in-
cludes the extraction of patches, the saliency estimation and
the dense disparity estimation, and an actual analysis and ar-
tifact detection step, which includes the disparity distribution
analysis, the sharpness mismatch detection and the color mis-
match detection modules. The following subsections describe
all processing steps in detail.

3.1. Pre-processing

3.1.1. Voronoi Patch Extraction

To extract approximately equally sized patches from the ODI,
first evenly distributed points are computed on the sphere,
and then the spherical Voronoi diagram [1] is computed from
them. Each cell of the computed Voronoi diagram corre-
sponds to a patch. Figure 2 shows the spherical Voronoi dia-
gram computed from 30 evenly distributed points on the sphere,
and its projection into the ERP format.
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(a) Voronoi diagram. (b) Voronoi diagram mapped into ERP.

Fig. 2: Voronoi patch extraction.
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, i.e., the length of the shortest path
on the surface of the sphere connecting these two points.

For each Voronoi cell the centroid that defines the orien-
tation of the patch’s image plane is computed, and then the
patch is mapped onto the surface of the left and right ERP im-
age. The resolution of each patch is defined by the pixels per
visual angle, a parameter that is kept constant for each patch.

During the mapping of the spherical patch of the ODI into
the ERP format, the pixel colors are obtained by sampling the
ODI in ERP format using bilinear interpolation. As sampling
can suffer from aliasing, we implemented the random super-
sampling antialiasing approach to minimize aliasing.

3.1.2. Saliency Estimation

For the computation of the saliency maps, we implemented
an alternative method to the one introduced by De Abreu et
al. [5], which was developed originally for monocular ODIs.
Our method computes a saliency map from a sequence of
HMD viewport positions on the ODI, obtained while a viewer
is freely looking at the ODI. For each viewport position, a
filter kernel centered on the viewport and defined by its di-
mension, is projected onto the ERP image. The projections
of the filter kernels are then added in order to obtain the fi-
nal saliency map. In our approach, we use the Gaussian filter
centered on the viewport, due to the fact that visual acuity is
at its maximum at the center of the human visual field, i.e. the
viewer tends to look at the center of the viewport rather than
at the borders. The Gaussian filter is defined as follows:
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Fig. 3: Combination of the input ODI 5 and the saliency map
using a jet color map (blue: low saliency, red: high saliency).

where (u, v) are pixel coordinates centered on the HMD view-
port, while �

u

and �
v

control the horizontal and vertical filter
size and are related to the field of view (FOV) and the resolu-
tion of the HMD viewport.

For our dataset used in Section 4, we performed a subjec-
tive test with 17 test subjects similar to the one described in
[5]. Figure 3 shows an example of a saliency map computed
from a stereoscopic ODI overlaid with the original ERP input
image. Red indicates high saliency while blue indicates low
saliency, i.e. users tend to look at areas close to the equator of
the ODI or at areas which are exciting.

3.1.3. Disparity Estimation

As per pixel disparity information is required for SMD, CMD
and disparity distribution analysis, dense disparity estimation
is the third pre-processing step of our approach. To esti-
mate disparity maps between the left and right ODI, we ap-
ply the Semi-Global Block Matching approach described in
[8] which delivers good results at reasonable computational
costs.

Since the disparity estimation can be noisy and inaccurate,
we apply a consistency check for the disparity values, and
only disparity values which are consistent are used for further
computations. If DM

L2R and DM

R2L are the disparity maps
from left to right view, and from right to left view, then the
disparity at pixel (x, y) in DM

L2R is valid if

|DM

L2R(x, y) +DM

R2L(x�DM

L2R(x, y), y)|  �, (3)

where � is a predefined threshold.

3.2. Artifact Detection and Analysis

This section describes the actual analysis and artifact detec-
tion part of our system, which is performed after the pre-
processing part. We integrate the saliency derived from Sec-
tion 3.1.2 at two levels: pixel and patch level. At pixel level,
we use the pixel saliency  (p) in order to weight each pixel
p that is processed using a weight equal to g

0( (p)), where
g

0 is a function that can be freely chosen. The saliency at
pixel level is used to compute the local patch scores which
are computed by the sharpness and color mismatch detection
modules.

At patch level, the patch saliency  , which is equal to the
average pixel saliency inside the patch, is used to weight the



local patch scores using a weight equal to g

00( ), where g

00

is also a function that can be freely chosen. The saliency at
patch level is used to compute the global score of the ODI.

We implemented two global scores, the saliency-based
weighted sum of local scores, and the number of patches with
artifacts, like sharpness or color mismatch. On the one hand,
the saliency-based weighted sum is defined by the following
equation:
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is the local artifact patch score, in this paper the SM
or CM patch score. On the other hand, the number of patches
with artifacts can be computed as follows:
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For the generation of the results in Section 4, g0 and g
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i.e., pixels and patches with a saliency of more than 20% have
a full weight when calculating the scores.

3.2.1. Sharpness Mismatch Detection

For sharpness mismatch detection we implemented a modi-
fied version of the SMD method introduced by Liu et al. [13],
which was originally developed for planar images. The new
version processes each patch independently within the ODI
and takes into account the saliency information.

First, edges are extracted in corresponding patches of both
views using the Canny edge detector. The analysis is then
conducted from the view whose patch contains more edge
pixels, i.e., from the sharper view. The edge pixels are then
segmented at different disparity levels and only the disparity
levels with enough edge pixels are further processed. In the
original method, a disparity level is ”edge-significant” if the
number of edge pixels on it is larger than 5% of the average
amount of edge pixels per disparity level. In the modified
method, however, a disparity level d is ”edge-significant”, if
the sum of the saliency weights g0( ) at the edge pixels in d

is larger than 5% of the average amount of saliency weights
at the edge pixels per disparity level.

The edge pixels in corresponding patches of both views
are then matched and the edge width is estimated. The edge
width is computed perpendicularly to the edge orientation us-
ing the method described in [14]. For each matched edge
pixel pair pd

j

in the disparity level d, a sharpness mismatch
criteria C

sm

(pd
j

) based on the edge width, edge contrast, and

Fig. 4: Example of SM visualization: blurred left ODI 5 using
a Gaussian filter (top) and SM visualization (bottom) includ-
ing a text overlay with the SM patch score and the saliency.

edge disparity is evaluated in order to decide whether sharp-
ness mismatch exists or not. The probability of sharpness
mismatch in the disparity level d is estimated as follows:
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where N

d

is the number of matched edge pixel pairs in the
disparity level d and g

0( 
i

(pd
j

)) is the weighting function based
on the saliency as introduced in Equation 6.

Csm is an indi-
cator function based on the SM criteria C

sm

, which is equal
to one if the SM criteria C

sm

is met, and zero otherwise.
The final patch score for the probability of a sharpness

mismatch PSM

i

in a patch i is obtained by averaging P

d

sm

of
the ”edge-significant” disparity levels as follows:
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where N is the total number of ”edge-significant” disparity
levels, and d

k

is the index of the k-th ”edge-significant” dis-
parity level. The global SM score of the ODI is then deter-
mined with Equation 4 by substituting S

i

with PSM

i

.
Figure 4 shows the left ODI blurred with a Gaussian filter

in the center, and the visualization of the patch SM scores us-
ing a jet color map. As can be noticed, our approach correctly
detects and localizes the SM.

3.2.2. Color Mismatch Detection

The color mismatch detection module compares the color prop-
erties between corresponding patches of left and right views.
In the first step, pixels which are present in both correspond-
ing patches of the two views are detected using the disparity
maps validated by Equation 3. Let’s assume that ⌦

L

and ⌦
R



Fig. 5: Example of CM visualization: left and right ODI 11
(top) and CM visualization (bottom) including a text overlay
with the CM patch score and the saliency.

are common regions in the left and right view. Then, two cor-
responding pixels p(x, y) 2 ⌦

L

and p(x0
, y) 2 ⌦

R

belong
to the same region, if x0 = x � DM

L2R(x, y). For all pix-
els belonging to ⌦

L

and ⌦
R

, the color properties, i.e. mean
and standard deviation of the color channels, are computed as
introduced by [17]. Instead of using the l↵� color space, as
proposed by the authors, we extract the same statistics from
the Lab color space.

Assuming that I
L

(p) and I

R

(p) are the colors at the pixel
p defined in the Lab color space in the left I

L

and right I
R

view, then the saliency-based means for each color channel
are defined as
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(p)) is the weighting func-
tion based on the saliency as introduced in Equation 6. The
saliency-based standard deviations for each color channel are
defined as
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Finally, the color mismatch score for patch i is computed
with:
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where � is a tuning parameter and set to one for the genera-
tion of the results. The global CM score of the ODI is then
determined with Equation 4 by substituting S

i

with CMS

i

.
Figure 5 shows the left and right input ODIs and the vi-

sualization of the patch CM scores using a jet color map. As
can be noticed, our approach correctly detects and localizes
the CM.

3.2.3. Disparity Distribution

While color and sharpness mismatch may impact the per-
ceived 3D quality, it is also largely influenced by the proper

(a) Disparity map (red: foreground, blue: background)

(b) Disparity histograms: global (center), horizontal (bottom), ver-
tical (right)

Fig. 6: Example of disparity distribution analysis for ODI 12.

use of the available disparity budget, i.e. the range between
minimum and maximum disparity. The optimal disparity range
depends mainly on the screen size and the viewing distance.
Violating it may cause hyper-convergence or hyper-divergence
and increase the vergence-accommodation conflict, and lead
to discomfort and fatigue [19]. Within this range, the distribu-
tion of the disparity values has a large impact on the 3D effect
including the perceived depth within (intra) and between (in-
ter) objects.

The disparity distribution module analyzes the distribu-
tion of the disparities for the whole frame or selected regions.
For the visualization, global as well as local (horizontal and
vertical) histograms are extracted by quantizing the disparities
and counting the amount of pixels per disparity level across
the whole frame or individual rows and columns, respectively.

For further evaluation, the disparity distribution is described
with different measures including the disparity range as well
as skewness and kurtosis. The skewness describes the sym-
metry of the distribution and is defined as the ratio of the 3rd
moment m3 and the standard deviation � as s = m3/�

3. A
skewness of 0 indicates a balanced (middleground) disparity
distribution while a negative/positive skewness corresponds
to a disparity distribution focused on the background/fore-
ground. The (excess) kurtosis describes the uniformity of the
distribution and is defined as the ratio of the 4th moment m4

and the standard deviation � as s = m4/�
4 � 3. A kurtosis

of 0 indicates a disparity distribution that follows a normal
distribution while a negative/positive kurtosis corresponds to
a more uniform/peaky distribution, respectively. The normal-
ized statistical moments are defined as m

k

= 1/n
P

i

(x
i

�
µ

x

)k with the disparity values x
i

and the mean disparity µ

x

.
Figure 6 shows an example of the estimated disparity map

and the different disparity histograms together with the statis-
tical measures as overlay. Note that only 90� of the vertical
FOV of the ERP images were used for the disparity analysis
due to the large distortions of the pole caps and because pole
caps were not captured for some of the ODIs (e.g. Panocam
POD 3D and Odyssey).



Analysis Measurements ODI
1a) 2b) 3c) 4d) 5e) 6c) 7e) 8a) 9f) 10g) 11h) 12g) 13c) 14c) 15c) 16h) 17a) 18f)

SMD No. of patches with SM 3 1 1 2 0 0 0 0 0 0 0 0 0 1 0 0 0 0
Global SM Score 0.132 0.090 0.062 0.091 0.046 0.058 0.053 0.068 0.042 0.041 0.081 0.045 0.083 0.059 0.058 0.078 0.069 0.107

CMD No. of patches with CM 15 6 10 13 4 2 2 7 0 0 20 0 6 4 4 0 22 3
Global CM Score 2.463 1.438 2.115 2.401 1.365 1.117 1.145 1.766 0.910 0.065 7.583 0.096 1.639 1.411 1.218 0.785 3.519 1.038

Disparity

Min. disparity in % -1.89 -1.53 -0.16 -1.40 -1.23 -1.01 -1.62 -1.70 -0.70 -0.48 -3.99 -0.01 -1.53 -0.65 -0.55 -3.33 -0.67 -4.09
Max. disparity in % 2.58 0.04 0.09 1.06 0.09 -0.01 0.48 0.74 0.57 -0.04 0.16 0.43 0.01 -0.01 -0.01 0.31 0.50 0.31
Skewness -1.14 -2.47 1.35 0.41 -1.28 -1.94 -1.23 1.12 -1.79 -1.06 -2.52 1.27 -1.57 -1.72 -1.43 -4.28 1.32 -2.45
Kurtosis 1.93 6.15 1.31 2.82 4.43 4.58 2.33 4.05 2.61 2.42 9.51 1.39 3.11 2.36 1.95 39.02 3.59 8.59

a) Panocam POD 3D, b) Ozo, c) Odyssey, d) unknown, e) Jaunt, f) GoPro, g) 3D conversion, h) Vuze VR

Table 1: Results of our system for SMD, CMD and disparity analysis (min. and max. values in % relative to the image width).

4. RESULTS

In order to demonstrate the performance and usability of our
proposed system, we evaluated the quality of a dataset of 18
ODIs by measuring SM, CM and disparity distribution as de-
scribed in the previous section. Table 1 shows the computed
global scores for SM and CM and the number of patches with
detected artifacts according to Equation 4 and Equation 5, re-
spectively, for the entire dataset taking saliency into account.
The values with the highest scores are highlighted in red while
the ones with the lowest scores are highlighted in green. ODI
10, which was converted from 2D to 3D in post, has the low-
est scores and no patch with SM or CM was detected. SM and
CM are very unlikely for post-converted images as the stereo-
scopic views are generated using depth-image-based render-
ing (DIBR). ODI 1 has the highest SM score and also a high
CM score. This ODI was captured with Panocam’s POD 3D
which uses 9 stereo camera pairs capturing the left and right
view of the ODI independently (see Figure 7 for visualization
of the SMD in ODI 1). ODI 11 was captured with the Vuze
VR camera which uses 4 stereo camera pairs. Here the SM
scores are average while the CM global score is the highest
of all ODIs under evaluation (see Figure 5 for visualization of
the CMD in ODI 11). ODI 11 and ODI 17 are the two ODIs
which are characterized by more than 20 patches with CM.

In Figure 7, we exemplary show three ODIs with SM de-
tected by our method, together with their saliency maps and
close-ups of detected regions. As shown in the figure, SM
was correctly detected and highlighted in ODI 1 and ODI 2.
In ODI 4, a blending artifact was detected as SM. Figure 8
exemplary shows two ODIs with detected CM, together with
their saliency maps and close-ups of detected regions. Simi-
lar to SM, our proposed system detects and highlights patches
with CM correctly. Furthermore, the patch scores and the
saliency values of the patches are displayed in each patch for
both SMD and CMD.

Finally, Table 1 also shows the results of the disparity
analysis module, i.e. the minimum and maximum disparities
in percentage of the ERP image width as well as the skewness
and kurtosis for each of the ODIs. At this point, we would like
to note that the percentage values of the disparities need to be
based on the width of the viewport in order to compare them
with disparity ranges of 3DTV or 3D cinema content. As an
example, the disparity budget of -4.09% to 0.31% for ODI

18 would be -16.36% to 1.24% for the viewport of an HMD
with 90� horizontal FOV. This results in hyper-convergence
and causes high visual discomfort for the end-user.

Figure 9 illustrates the disparity distribution of ODI 16
which has a high positive kurtosis, i.e. Laplacian (peaky) dis-
tribution. Here, the hand of the person (with a negative dis-
parity of -3.33%, i.e. -13.23% within the viewport) and the
person itself are very close to the camera rig while the rest of
the scene is at far distance. Some of the test subjects men-
tioned that this close object was quite annoying.

5. CONCLUSION

With the increasing number of HMDs and omnidirectional
capture systems, cinematic VR is becoming a popular trend in
immersive media. However, creating error-free stereoscopic
360-videos is still a challenging task.

In this paper we presented a novel framework and system
for quality control in cinematic VR applications, i.e. of ODIs
and 360-videos. The developed tools can be used to monitor
the quality and detect artifacts within post-production work-
flows.

The ODIs are preprocessed in order to ease the subsequent
quality analysis and artifact detection. This includes the par-
titioning into spherical Voronoi patches for accurate detection
and localization of artifacts, the extraction of saliency infor-
mation to weight artifacts according to the visual attention,
and the estimation of dense disparity maps.

The current framework contains three modules for further
quality evaluation. The sharpness and color mismatch detec-
tion modules detect local deviations between the two views
of the stereoscopic ODI. The disparity distribution module
analyzes the estimated disparity values and calculates the dis-
parity distribution as well as its skewness and kurtosis.

The developed modules were tested and evaluated on a
comprehensive dataset of 18 ODIs originating from different
omnidirectional capture systems. The evaluation shows that
meaningful and reliable results can be achieved by applying
the patch and saliency based approaches for the different anal-
ysis modules.

In the future, we will further evaluate the overall frame-
work and the individual modules through subjective tests with
potential end-users in order to find reliable thresholds for as-
sessing the quality. We will also develop additional modules



to detect other issues commonly found in 360-video such as
stitching and blending artifacts, and compare our modules
with state of the art approaches for conventional S3D con-
tent. Finally, we will apply saliency prediction for automatic
saliency map generation as saliency maps optained from sub-
jective tests are not practical in post-production workflows.
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Fig. 7: Examples of ODIs with sharpness mismatch.

Fig. 8: Examples of ODIs with color mismatch.

Fig. 9: Disparity distribution of ODI 16.
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