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ABSTRACT
Given the significant industrial growth of demand for virtual
reality (VR), 360◦ video streaming is one of the most im-
portant VR applications that require cost-optimal solutions to
achieve widespread proliferation of VR technology. Because
of its inherent variability of data-intensive content types and
its tiled-based encoding and streaming, 360◦ video requires
new encoding ladders in adaptive streaming systems to
achieve cost-optimal and immersive streaming experiences.
In this context, this paper targets both the provider’s and
client’s perspectives and introduces a new content-aware
encoding ladder estimation method for tiled 360◦ VR video
in adaptive streaming systems. The proposed method first
categories a given 360◦ video using its features of encoding
complexity and estimates the visual distortion and resource
cost of each bitrate level based on the proposed distortion
and resource cost models. An optimal encoding ladder is
then formed using the proposed integer linear programming
(ILP) algorithm by considering practical constraints. Ex-
perimental results of the proposed method are compared
with the recommended encoding ladders of professional
streaming service providers. Evaluations show that the pro-
posed encoding ladders deliver better results compared to the
recommended encoding ladders in terms of objective quality
for 360◦ video, providing optimal encoding ladders using a
set of service provider’s constraint parameters.

Index Terms— 360◦ video, virtual reality, adaptive
streaming, encoding ladder, optimization

I. INTRODUCTION
Recent years have witnessed a significant industrial invest-

ment in virtual reality (VR) technology that has motivated
technical developments of graphic cards and head-mounted
displays (HMDs) [1]. Currently, the video technology field is
evolving toward providing immersive VR experiences using
360◦ video streaming. 360◦ video is captured with omni-
directional camera arrays and the individual camera views
are projected onto a sphere. For backward-compatibility pur-
poses with the existing video coding standards and streaming
pipelines, the spherical videos are mapped onto a planar
surface using projection techniques, such as equi-rectangular
projection (ERP). ERP videos contain full panoramic 360◦

horizontal and 180◦ vertical views of the scene.
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Fig. 1: Overview of the different formats and representations.

360◦ video streaming is significantly challenging owing
to its resource-intensive encoding and storage requirements
to cope with the very high resolution of its representation.
As the VR end-user can only view the field of view (FoV) of
the display device (e.g., HMD, smartphone, tablet or laptop),
called viewport, very high resolution of 360◦ video (e.g.,
8K×4K ERP) is required for transmission in order to achieve
high-quality and seamless video streaming experiences. To
reduce both the bitrate consumption of the end-user and the
visual distortion of the viewport, 360◦ video frames can be
divided into self-decodable regions [2], [3], namely, tiles.

To deliver the tiled 360◦ videos to the end-user devices,
adaptive streaming systems, such as MPEG-dynamic adap-
tive streaming over HTTP (DASH) [4], provide smooth
360◦ video streaming experiences, but still require high
encoding and storage costs for the tiled 360◦ video. The
spatial relationship description (SRD) [5] can be used with
DASH systems where the 360◦ video stream is divided into
tiles. In the SRD, each 360◦ video is divided into a set of
tiles that includes different bitrate levels of the tiled video.
Different bitrate levels share the same video content but are
encoded using various settings, such as the resolution and the
target bitrate for encoding. Each different version is called
a representation, and a set of representations for the video
content forms the encoding ladder which is requested by the
DASH client to play the tiled 360◦ video. However, encoding
and accumulating a large combination of representations for
each video content might cover a broad range of network
bandwidths such that the end-users can request video streams
of appropriate bitrates, and thus it requires high encoding
and storage costs [6]. Fig. 1 illustrates the different stages
from the spherical projection to the encoding ladder with the
different representations of the ERP video.

To tackle this problem, cost-optimal encoding ladders are
needed for service providers to deliver tiled 360◦ video
content and satisfy network bandwidths. In fact, tiled 360°



video provides different rate-distortion (RD) performance
compared to the traditional video content due to different
characteristics of both. In particular, tiling affects the coding
efficiency, because redundancy cannot be exploited over
tiles. Furthermore, given its 2D projection for encoding (e.g.,
ERP), each tile of the 360° video has a different level of
contribution for the overall 360° video viewing quality due
to stretching effects caused by the projection [7], [8]. To this
end, new encoding ladder configurations are required for the
tiled 360° videos to provide cost-optimal video streaming
service for VR end-user devices.

Adaptive streaming systems must deal with issues of
the delivery of the tiled 360◦ video from two different
perspectives, the service provider and the client. Most recent
work focused on the client’s perspective [9]–[14] without
considering the service providers’ perspective. More clearly,
they neither provide 360◦ video content-specific encoding
ladders nor consider the resource costs of the content deliv-
ery network (CDN), which is a cloud-based video streaming
system that delivers videos to the edge servers so as to
effectively connect to the end-users. Given the different
characteristic of the tiled 360◦ video content (e.g., ERP
and tile encoding), recommended encoding ladders for tradi-
tional videos [15], [16], that are currently used for adaptive
streaming systems, might not achieve an acceptable quality
of experience (QoE) [6], [17] for the tiled 360◦ video. Using
such encoding ladders might also waste CDN resources and
the end-users’ bandwidth.

Our work aims to improve the performance of adaptive
360◦ video streaming systems, providing guidelines for the
design of optimal 360◦ VR video streaming systems using
tiles. To this end, we focus on the configuration of cost-
optimal encoding ladders in adaptive streaming systems by
considering both the provider’s and client’s perspective and
develop an encoding ladder estimation method for tiled
360◦ video streaming, which is the main contribution of
this work. To the best of our knowledge, such encoding
ladder estimation method has not been studied yet. The
proposed method deals with minimizing the distortion of the
observed tiled 8K×4K ERP video content on the client side
while reducing the resource costs on the service provider
side, such as storage capacity utilization and computa-
tional costs for encoding. In this context, we categorize
the given 360◦ videos using their extracted features of
encoding complexity, estimate their visual distortion based
on the developed distortion model, and calculate the resource
costs using the proposed cost models. The cost-optimal
encoding ladder configuration problem is then solved using
the formulated integer linear programming (ILP) algorithm
by considering practical constraints. Our evaluations show
that the proposed cost-optimal encoding ladders using a set
of service provider’s constraint parameters achieve better
results compared to the recommended encoding ladders in
terms of objective quality for 360◦.

The remainder of this paper is organized as follows.
Related work is detailed in Section II. Then, the proposed
system model is presented in Section III. Experiments to
demonstrate the performance of our proposed method are
presented in Section IV. Finally, Section V concludes this
paper with a summary and future work.

II. RELATED WORKS

To define the most suitable encoding ladder for traditional
video, an unique encoding ladder for each given video
content is generated for instance by the engineers at Netflix
using the brute-force search algorithm [16]. In their research
work, each quality-resolution pair was plotted for a given
content at each bitrate level. An upper convex hull of its RD
curve was then selected to define the encoding ladder. Their
approach is very effective concerning QoE for traditional
video content. However, it is neither cost-optimal in the sense
of resource consumption of a CDN nor content-specific and
optimized for tiled 360◦ videos.

Similarly, academic researchers demonstrated that the
previously defined fixed encoding ladders such as Apple’s
and Netflix’s one-size-fits-all schemes [15], [16], have crit-
ical weaknesses for traditional video content as described
in [18]. Here, the authors defined an optimal encoding
ladder for each video category to improve the performance
of adaptive streaming for traditional videos. The problem
was formulated as an optimization algorithm to find the
best bitrate ladder for the given videos by considering the
characteristics of a set of end-users in a given database
without considering encoding and storage costs. The results
have shown, however, that the fixed encoding ladders cannot
provide the best objective quality for given traditional videos
and clients’ bandwidth.

Most recent work focused on 360◦ video streaming solu-
tions using tiles in order to optimize the quality on the client
side [9]–[14]. The authors in [9] proposed a new adaptive
streaming system based on tiling, integration of the DASH
standard and a viewport-aware bitrate level selection method.
In [10], an adaptive bandwidth-efficient 360 VR video
streaming system using a divide and conquer approach was
presented. The work is based on a dynamic viewport-aware
adaptation technique using tiles, derived from a hexaface
sphere, and the DASH standard. Similar to the previous
work, the authors of [11] also propose a viewport-adaptive
video delivery system using tiles (cube maps) and different
video representations that differ by their bitrate and different
scene regions. Additionally, in [12], high-resolution video
content is transmitted in tiled fashion using fixed rectangular
tiles. The authors in [13] presented a bandwidth efficient
adaptive 360◦ video streaming system. The work in [14]
described the bandwidth problem of 360° video, and sug-
gested to use tile-based streaming. Furthermore, their work
described the principles of adaptive streaming of 360° video
using tiles and evaluated their system with respect to bitrate



overhead, bandwidth, and quality requirements. However,
none of these works are dealing with cost-optimal encoding
ladders on the service provider’s side to reduce storage
capacity utilization and computational costs.

III. PROPOSED SYSTEM MODEL

We consider a cloud-based video-on-demand 360◦ video
streaming pipeline for VR as depicted in Fig. 2. Each
captured 360◦ spherical video is mapped to the ERP rep-
resentation in 8K×4K resolution for encoding purposes at
the source node. The media platform divides each ERP
video into N tiles and estimates an unique cost-optimal
encoding ladder. Each tile is then encoded at various bitrate
levels using multiple encoders with estimated cost-optimal
encoding ladder parameters. Then, the generated bitstreams
are divided into a set of chunks with equal playback duration,
encapsulated by the packaging node and eventually stored on
the origin server. Each stored content is then deployed to the
CDN, where the bitstreams are efficiently distributed to the
VR end-users through the edge servers.

Each end-user device contains the tiled DASH-VR player
[9] to communicate with the edge servers and to request
individual tiles with appropriate bitrate levels and resolu-
tions from the encoding ladder depending on the bandwidth
availability of the network. For adaptive streaming purposes,
a set of tiles is encoded at the media platform using different
encoding settings. More precisely, let v be an 8K×4K ERP
360° video in the set of videos V . Each v is split into N tiles,
each tile j, j ∈ T , is then encoded at a different bitrate bj
and resolution rj = wj × hj . Hence, the quadruple (v,j,b,r)
corresponds to a representation of the video v ∈ V for the
tile j ∈ T , encoded at a target bitrate b ∈ B and spatial
resolution r ∈ R. Note that v, j, b, and r are integer values
and represent the indices of their corresponding sets.

In this context, encoding and accumulating all combina-
tions of the quadruple (v,j,b,r) might be very expensive for
service providers. Therefore, a cost-effective optimization is
required in order to minimize the service provider’s resource
costs while providing cost-optimal and high quality 360°
video streaming experience.

For this aim, the proposed estimation method contains
four main parts: classification of the content type, distortion
modeling, cost modeling, and problem formulation. First,
we extract spatial and temporal features (fspa and ftmp)
of the v-th video to classify its content type as described
in subsection III-A. Then, we perform an automatic esti-
mation procedure for the encoding ladder using distortion
and cost models for the tiled v-th video as detailed in
subsections III-B and III-C, respectively. Again, in this en-
coding ladder estimation process we consider both the client
side (quality distortion) and service provider side (resource
costs). Finally, we formulate the cost-optimal estimation
problem for the encoding ladder by applying certain practical

constraints, which is eventually solved using the proposed
ILP algorithm as described in subsection III-D.

III-A. Classification of the content type
To classify the content type from a given set of content

types O, spatial fspa and temporal ftmp complexity features
are extracted from the videos. As each video v has different
RD performances at various resolutions, we can identify
two sources of video distortion: spatial down-sampling and
quantization. As a down-sampled version of v suffers from
spatial information loss, the level of information loss de-
pends on the spatial complexity of each video, which is one
of the encoding complexity features. Moreover, the high-
resolution version of a given v requires a larger amount
of bits to reduce its visual distortion. Compared to its
low-resolution version, the high-resolution version has a
higher sensitivity for unpredictable motions, which requires
further residuals to avoid visual distortions. Since predicted
residuals are compressed through quantization which results
in quality distortions, temporal complexity is the second
encoding complexity feature. The content type o of each
video is then determined from a given O by classification
using the extracted two complexity features.

To extract the feature set F = {fspa, ftmp}, we use the
constant rate factor (CRF) encoding. The CRF encoding,
unlike the constant quantization parameter (QP)-based en-
coding, has the QPs slightly varied across the time based
on the scene complexity, action, and motion. For instance,
when a scene contains a lot of action and motion, a higher
compression can be applied by raising the QP in order to
save bitrates. Therefore, the feature set F can be extracted
from the CRF encoded stream to identify the encoding
complexity of each v. For this purpose, the average size of
I- and P- frames can be used as main indicators to determine
the complexity features. As also demonstrated in [19], the
size of I-frames expresses the spatial complexity of each v.
Thus, we use the normalized version of the I frame sizes to
estimate fspa for a given video. As the average size of P
frames characterizes the amount of residual bits, we use the
ratio of the size of P frames over the size of I-frames as the
indicator for ftmp.

III-B. Distortion modeling
To model the distortion of a given v, we model two

sources of artifacts, the compression and spatial scaling
artifacts, of the tiled 360° video using its content type
and encoding resolution. Both artifacts, which are the most
important distortions that deteriorate QoE, are driven by the
encoding target rate and the adaptation of the video resolu-
tion to the target resolution. With the aim of reducing search
complexity, we generate a continuous distortion model for
each content type, as the given parameter space is too large
for a the brute-force search algorithm (e.g., Netflix’s work
in [16]). To this end, we derive a distortion function by
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Fig. 2: Schematic diagram of a cloud-based video streaming pipeline for VR which includes source, media platform, and
delivery of the tiled 360◦ video content.

fitting the two-term power series model using the following
fit function:

FTogB = kogZ
Ωog

B + Φog, (1)

where k, Ω, and Φ are fitting parameters used in the curve
fitting operation for the o-th content type, o ∈ O and
O = {o1, o2, . . . , o|O|}, of the g-the resolution, g ∈ G and
G = {g1, g2, . . . , g|G|}, at the tiled ERP video bitrate B.
Note that Z is the value of the total bitrate of the tiled 360°
video in terms of Mbps (i.e., total bitrate of the ERP video
recomposed of the tiles with bitrate B). These parameters for
the proposed distortion model, shown in Table I, were found
using the curve fitting operator. Note that index number of o
and g are listed in ascending order of their size. The target
resolution size is 8K×4K. For the sake of simplicity and
also a lack of variety of 8K 360° video content types, we
only distinguish between three content types and resolutions.
Each row and column number of the fitting parameters in
the table represents a different content type and resolution,
respectively.

To better reflect the distortion of the 360° video at the
clients’ side, we estimate the distortion, caused by the
mapping of the spherical content onto the planar surface
of the devices (spherical distortion), of the tiled 360° video
as a target value in the curve fitting using the weighted-
to-spherically-uniform mean square error (WS-MSE) [8].
WS-MSE measures the spherical surface using a non-linear
weighting in the MSE calculation. Such weights are calcu-
lated using the stretching ratio of the area that is projected
from the planar surface to the spherical surface. The noise
power for the i-th representation of the j-th tile, dij , can be
formulated as follows:

dij =

∑
x∈W

∑
y∈H

(
(tj(x, y)− t̃ij(x, y))2qj(x, y)

)
∑

x∈W

∑
y∈H

qj(x, y)
, (2)

where W ×H is the resolution of the reconstructed version
of the ERP 360° video. Note that x and y denote the pixel
coordinates of the ERP video, t and t̃ stand for the original
(i.e., uncompressed) and reconstructed versions of the j-th
tile and qj(x, y) represents the weighting intensity in (x, y)

of the weight distribution of the ERP for tj which can be
calculated according to [8] with:

qj(x, y) = cos
(y + 0.5−H/2)π

H
. (3)

III-C. Cost modeling
In this subsection, we develop cost models for the cloud-

based video streaming system in order to minimize the
resource costs for encoding workload and storage capacity
utilization at the service providers’ side.
III-C1. Encoding cost
The encoding cost is one of the most expensive computing
costs which usually occurs on the cloud servers and which
heavily depends on the video resolution. To calculate en-
coding costs, we consider the broken-line model where the
same cost is defined for similar resolutions. To this end, we
extend the cost calculation model used by the Amazon cloud
service [20] in order to consider broad range of resolution
sizes. The encoding cost ce can be described for the j-th tile
of the i-th representation as follows:

ceij =


µe, rij ≤ 720p

2µe, 720p < rij ≤ 1080p

4µe, 1080p < rij ≤ 4K

8µe, 4K < rij ≤ 8K

(4)

where µe is a constant term for the encoding cost defined
by the service provider and rij is the resolution of the j-th
tile in the i-th representation.
III-C2. Storage cost
Additionally, large storage capacity is required to store
all encoded tiles with different representations for adaptive
streaming on the server. The storage cost depends on the
data size of the tiled 360° video which is located on the
server. Considering a linear cost model where the cost is
proportional to the data size of each tiled 360° video stream,
the storage cost cs for the j-th tile of the i-th representation
can be described as follows:

csij = µsbsij , (5)

where µs is a constant term for storage cost defined by the
service provider and bsij is the estimated data size of the



Resolution G g1 g2 g3

Model Distortion Data size Distortion Data size Distortion Data size

k Ω Φ k Ω Φ k Ω Φ k Ω Φ k Ω Φ k Ω Φ

Content type O
o1 1809 -0.6959 5.649 0.7613 0.9901 52.54 4002 -0.7558 2.723 0.8005 0.9859 52.25 1829 -0.5587 -3.266 0.8264 0.9846 214.9
o2 220.1 -0.3583 6.447 0.6467 1.003 29.36 191.9 -0.2763 -5.728 0.6078 1.009 71.15 480.6 -0.3643 -5.728 0.5654 1.015 269
o3 820.4 -0.4702 6.2 0.6631 1.001 10.69 643 -0.3825 -2.625 0.6691 1 17.46 616.9 -0.2837 -23.78 0.5943 1.012 203.8

Table I: Curve fitting parameters for the proposed distortion and data size estimation models.

j-th tile in the i-th representation. The data size for each j
tile is estimated using the curve fitting technique similar to
the one used for Eq. (1). Parameters for the equation, shown
in Table I (Data Size), were found using the curve fitting
operator.

III-D. Problem formulation
In order to obtain the cost-optimal encoding ladder L∗

for a given video, a set of representations for L∗ is chosen
from the set of the estimated representation L that minimize
both the total spherical quality distortion of tiles and the
total resource cost of the cloud-based streaming system. For
this purpose, we formulate the problem as an optimization
problem using the following practical constraints:

(I) Bandwidth: In the proposed system, we consider that
the encoding ladder needs to cover a set of given net-
work bandwidth profiles P = {p1, p2, . . . , p|P|} with
their minimum Bmin and maximum Bmax bandwidth
ranges.

(II) Computational and storage costs: We set limits for
the encoding and storage costs which are the maximum
allowed computational cost Cmax and storage cost
Smax of the streaming system.

(III) Encoding rate: The bitrate levels of the representations
should be spaced between each other by the minimum
step size τ .

Our objective is to provide a low-quality distortion en-
coding ladder for a given tiled v at minimum resource costs
by considering the above described constrains. Thus, we
formulate the optimization problem as follows:

L∗ : argmin
L

∑
i∈L

∑
p∈P

(γci + (1− γ)di) aip (6)

with
ci =

∑
j∈T

(ceij + csij) ci ∈ P (7)

and
di =

∑
j∈T

dij , (8)

where ci and di are the total resource cost and quality
distortion for the i-th representation, respectively. In order
to have a trade-off between ci and di, we introduce a pre-
defined constant γ ∈ [0, 1] to be assigned by the service-
provider. To cover a wide range of network bandwidths, we
introduce a set of network bandwidth profiles in the problem
definition. The decision variable aip = {0, 1} indicates if

the i-th bitrate level for the p-th profile of a set of network
bandwidth profiles P is included or excluded in the encoding
ladder for a given v.

Equation (6) minimizes both the overall distortion of
the tiled 360° video and resource costs of the cloud-based
streaming system and is subject to the following constraints:

Bmin
p ≤ biaip ≤ Bmax

p ∀i ∈ L and ∀p ∈ P, (9)∑
i∈L

aip = b MΛp∑
p∈P Λp

c ∀p ∈ P, (10)∑
p∈P

aip ≤ 1 ∀i ∈ L, (11)∑
i∈L

∑
p∈P

siaip ≤ Smax, (12)∑
i∈L

∑
p∈P

ciaip ≤ Cmax, (13)

biaip
b∗n
≥ τ, ∀i ∈ L, ∀n ∈ L∗ and ∀p ∈ P. (14)

Equation (9) addresses Constraint (I) for each p. Equa-
tion (10) sets the maximum number of representations in the
encoding ladder for the p-th profile based on its weighting
factor Λ and the total number of representations M in the
encoding ladder. The weighting factor Λ for each network
profile is shown in Table II. The constraint of Equation (11)
avoids the selection of the same representation for each pro-
file. Additionally, Equations (12) and (13) satisfy Constraint
(II) by ensuring that encoded videos for estimated encoding
ladders cannot exceed Smax and Cmax. Equation (14)
satisfies Constraint (III) by ensuring that the target bitrate
of each selected representation n in the L∗ is spaced by a
minimum step size τ .

IV. EXPERIMENTAL RESULTS
In this section, we investigate the performance of the

proposed encoding ladder estimation method by comparison
with the one-size-fits-all schemes [15], [16], [21] for the tiled
360° video, and evaluate the proposed method under several
service provider’s constraints.

IV-A. Setup
We use as the following six 8K×4K resolu-

tion 360° ERP video test sequences: V = {Train,
Stitched left Dancing360 8K, Basketball, KiteFlite, Chair-
Lift, SkateboardInLot} [22]–[24]. Each v ∈ V was split
into N = 10 tiles which was obtained as an optimal
number in our previous research work in [9]. The encoded



bitrate for each tile is equally distributed by dividing the
target bitrate to the N tiles. Their encoding complexity
features and assigned content types are shown in Table
III, which was estimated using the described method
in the Section III-A. Three content types in the set,
O = {o1, o2, o3}, were used to classify the videos using
the estimated complexity features. The Train, Basketball,
and ChairLift sequences were used to model the curve
fitting function in Equation (1) and we evaluate our method
using the Stitched left Dancing360 8K, KiteFlite, and
SkateboardInLot video sequences. Further, three different
resolutions G = {3072×1536, 4096×2048, 8192×4096} in
the encoding ladders and four different bandwidth profiles
p were used as defined in Table II with minimum Bmin

and maximum Bmax bandwidth ranges, and Λ for each
bandwidth profile.

Profiles: p1 p2 p3 p4

Bmin (Mbps) 1 3 15 25
Bmax (Mbps) 4 20 30 40
Λ 0.25 0.25 0.25 0.25

Table II: Network bandwidth profiles.

We focus on the browser-based video streaming use-
case which is one of the core experiments in the ongoing
standardization activity [25]. Since AVC is the only im-
plemented decoder in current available browsers which can
support HMDs, we apply the H.264/AVC standard in our
experiments. In this context, we encoded videos using the
FFmpeg software (ver. N-85291) [26] with two-pass and 200
percent constrained variable bitrate encoding configurations.
At this stage, it is important to mention that our proposed
method is video codec agnostic; it can be easily utilized with
different video coding standards.

Sequence fspa ftmp O

Train 0.977 0.065
o1Stitched left Dancing360 8K 0.884 0.110

Basketball 0.843 0.090
o2KiteFlite 0.861 0.090

ChairLift 0.789 0.212
o3SkateboardInLot 0.827 0.521

Table III: Encoding complexity features and assigned con-
tent types for the used test sequences.

To evaluate our proposed method, the objective quality
metrics WS-MSE and WS-PSNR [8] were utilized to calcu-
late the quality performance of the 360° video. Further, three
different one-size-fits-all encoding ladders (i.e., Apple [15],
Axinom [21], and Netflix [16]), which are recommended
for traditional videos, were used as references to investigate
the quality performance of our proposed method. Table IV
shows three reference one-size-fits-all encoding ladders for
their three ERP resolutions and four total target encoding
rates. In the table, resolutions and target encoding rate were

calculated by summation of each tile’s resolution and target
encoding rate, respectively.

IV-B. Performance evaluation

Encoding ladders for our proposed method have been
estimated by solving the formulated ILP algorithm in Sec-
tion III-D using Pyomo (ver. 5.0) [27]. We set µe and µs to
0.017 and 0.023, respectively. These cost values are same as
the real cost values in [20].

To derive the distortion function in Equation (1), we cal-
culated the WS-MSE versus bitrate (in Mbps) performance
graphs in Fig. 3 for each resolution of the videos Train, Bas-
ketball, and ChairLift. The results demonstrate the various
performances due to the high diversity in video content char-
acteristics. As can be seen in the figure, each content type has
various content dependencies for each encoding resolution
and bitrate. For instance, the Train sequence (content type
o1), which contains the lowest complex encoding features,
achieves a low distortion score compared to content types o2

and o3. Because of such diversity, one-size-fits-all schemes,
which are used by almost all research works, cannot provide
cost-optimal and high-quality streaming performances for
the tiled 360° videos.

Evaluation I: To evaluate the RD performance gain of
our encoding ladder estimation solution, we compare our
proposed method with three different recommended one-
size-fits-all schemes of the streaming service providers. As
these ladders were estimated without considering constraints,
we set γ = 0 (in order to focus on distortion only) and
exclude other constraints in equations between (9) and (13)
for a fair comparison in this test.

Figure 4 shows the RD curves computed with average
WS-PSNR for the Stitched left Dancing360 8K, KiteFlite,
and SkateboardInLot sequences. The results show that our
proposed method considerably increases the objective video
quality (i.e., WS-PSNR) compared to the one-size-fits-all
schemes at all times. In particular, the proposed method
demonstrates high bitrate savings between 10-30 Mbps band-
width ranges for the content types o1 and o2. To this end,
we notice that one-size-fits-all schemes provide high scores
for the content type o3 compared to their scores for content
types o1 and o2.

Evaluation II: We further analyze the performance gain
of our method using the Bjøntegaard metric [28] in Table V.
This metric describes the distance between two RD curves.
In this manner, the bitrate difference, i.e. BD-rate, was
calculated in percentage averaged over the entire range. A
negative BD-rate indicates a decrease of bitrate at the same
quality. From the table, we can notice that the proposed
method provides considerable bitrate savings compared to
the recommended encoding ladders at the same bitrates.

Evaluation III: Finally, in the last set of evaluations,
we consider a scenario where the constraints of Smax and
Cmax are 8000, τ = 1.2, and M = 12. In this setup, we



Apple [15] Axinom [21] Netflix [16]

Z (Mbps) W ×H Z (Mbps) W ×H Z (Mbps) W ×H
45 8192 × 4096 45 8192 × 4096 43 8192 × 4096
30 8192 × 4096 30 8192 × 4096 30 4096 × 2048
20 4096 × 2048 21 4096 × 2048 23.5 4096 × 2048
11 3072 × 1536 12 3072 × 1536 17.5 3072 × 1536

Table IV: Recommended one-size-fits-all encoding ladders for traditional videos by service providers.
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Fig. 3: Average WS-MSE - bitrate curves for sample 8K×4K ERP 360° videos with different content type.
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Fig. 4: Performance comparison using the RD curves computed with the average WS-PSNR.

Sequence v Streaming vendor

Apple Axinom Netflix

Stitched left Dancing360 8K -5.557 -5.885 -69.253
KiteFlite -13.876 -14.436 -69.178
SkateboardInLot -1.673 -1.701 -1.155

Table V: BD-rate saving (%) of the proposed method.

use the normalized difference of the total cost ∆CS and
the distortion ∆DS (in terms of WS-MSE) in percentages
for evaluation purpose. Table VI shows the results of the
proposed encoding ladder estimation using resolution-bitrate
pairs for γ = 0, γ = 0.1, and γ = 0.5.

From the results, we observe that the lowest complex con-
tent, i.e., content type o1, increases its encoding resolution
and decreases its target encoding rate at the range between
i = 2 and i = 10 to reduce the total cost by considering
cost and distortion tradeoffs using γ = 0.1 and γ = 0.5. On
the other hand, we observe that the most complex content,
i.e. content type o3, decreases both its encoding resolution
and target encoding rate in order to reduce the total cost
by considering cost and distortion tradeoffs using the γ =
0.1 and γ = 0.5. Table VII reports the total cost saving
and distortion gain with respect to different γ. Finally, we

would like to mention that, the GNU linear programming
kit (GLPK) for Pyomo was able to solve the formulated
ILP algorithm in Section III-D using the calculated data in
less than one minute on Intel(R) Core(TM) i7-6700 CPU @
3.40GHz with 32 GB of RAM.

V. CONCLUSIONS
This paper introduced a novel encoding ladder estimation

method for tiled 360◦ video streaming systems, considering
both the provider’s and client’s perspectives. To this end,
the objective of our proposed method was to provide cost-
optimal and enhanced video streaming experiences for VR
end-users. The developed system included classification of
the content type, distortion modeling, cost modeling, and
problem formulation. The performance of our proposed
method was verified in experimental evaluations. The results
showed that our method achieved significant bitrate savings
(especially for the content types o1 and o2) compared to the
one-size-fits-all encoding ladders which are recommended
by streaming service providers. Furthermore, the developed
method can automatically find cost-optimal encoding ladders
using several practical constraints, and provides efficient
streaming service for tiled 360◦ video. As future work, we
plan to extend our optimization framework by considering
the number of tiles for a given content type and investigating



Sequence v γ
Representation i

1 2 3 4 5 6 7 8 9 10 11 12

Stitched left Dancing360 8K
0.0 (g1,1.47) (g1,1.78) (g1,2.15) (g1,3.8) (g1,4.6) (g1,5.6) (g2,10.84) (g2,13.11) (g2,15.87) (g2,28.11) (g3,34.01) (g3,41.15)
0.1 (g2,1.34) (g2,1.61) (g2,1.95) (g2,2.60) (g3,3.14) (g3,3.80) (g3,6.12) (g3,7.40) (g3,8.96) (g3,17.45) (g3,21.12) (g3,25.55)
0.5 (g2,1.00) (g2,1.21) (g2,1.47) (g2,2.36) (g3,2.86) (g3,3.46) (g3,6.12) (g3,7.40) (g3,8.96) (g3,17.45) (g3,21.12) (g3,25.55)

KiteFlite
0.0 (g1,1.47) (g1,1.78) (g2,2.15) (g2,3.80) (g2,4.60) (g3,5.56) (g3,10.84) (g3,13.11) (g3,15.87) (g3,28.11) (g3,34.01) (g3,41.15)
0.1 (g1,1.47) (g1,1.78) (g2,2.15) (g2,3.80) (g2,4.60) (g3,5.56) (g3,6.73) (g3,8.14) (g3,9.85) (g3,17.45) (g3,21.12) (g3,25.55)
0.5 (g1,1.00) (g1,1.21) (g1,1.47) (g2,2.36) (g2,2.86) (g2,3.46) (g3,6.12) (g3,7.40) (g3,8.96) (g3,17.45) (g3,21.12) (g3,25.55)

SkateboardInLot
0.0 (g1,1.47) (g1,1.78) (g1,2.15) (g1,3.80) (g1,4.60) (g1,5.56) (g2,10.84) (g2,13.11) (g2,15.87) (g2,28.11) (g3,34.01) (g3,41.15)
0.1 (g1,1.47) (g1,1.78) (g1,2.15) (g1,2.86) (g1,3.46) (g1,4.18) (g1,6.12) (g1,7.40) (g1,8.96) (g1,17.45) (g2,21.12) (g2,25.55)
0.5 (g1,1.21) (g1,1.47) (g1,1.78) (g1,2.36) (g1,2.86) (g1,3.46) (g1,6.12) (g1,7.40) (g1,8.96) (g2,17.45) (g2,21.12) (g2,25.55)

Table VI: Results of the proposed encoding ladder estimation for γ = 0, γ = 0.1, and γ = 0.5.

Sequence v ∆cost (%) ∆distortion (%)

γ = 0.1 γ = 0.5 γ = 0.1 γ = 0.5

Stitched left Dancing360 8K 37.463 39.683 -13.628 -42.914
KiteFlite 33.165 39.206 -9.564 -25.326
SkateboardInLot 37.214 38.884 -8.977 -15.26

Table VII: Total cost saving and distortion gain with respect
to γ=0.0.

the effect of total costs by evaluating the effects of the
various constraint parameters using a larger set of video
sequences.
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