
LIGHT FIELD SUPER-RESOLUTION VIA LFBM5D SPARSE CODING

Martin Alain, Aljosa Smolic

V-SENSE Project, School of Computer Science and Statistics, Trinity College, Dublin

ABSTRACT

In this paper, we propose a spatial super-resolution method for
light fields, which combines the SR-BM3D single image super-
resolution filter and the recently introduced LFBM5D light field
denoising filter. The proposed algorithm iteratively alternates
between an LFBM5D filtering step and a back-projection step.
The LFBM5D filter creates disparity compensated 4D patches
which are then stacked together with similar 4D patches along a
5th dimension. The 5D patches are then filtered in the 5D trans-
form domain to enforce a sparse coding of the high-resolution
light field, which is a powerful prior to solve the ill-posed super-
resolution problem. The back-projection step then impose the
consistency between the known low-resolution light field and
the-high resolution estimate. We further improve this step by us-
ing image guided filtering to remove ringing artifacts. Results
show that significant improvement can be achieved compared
to state-of-the-art methods, for both light fields captured with a
lenslet camera or a gantry.

Index Terms— Light Fields, Super-Resolution, Sparse Cod-
ing, Back-Projection, Guided Image Filtering

1. INTRODUCTION

Light fields emerged as a new imaging modality, enabling to cap-
ture all light rays passing through a given amount of the 3D
space [1]. Compared to traditional 2D imaging systems which
only capture the spatial intensity of light rays, a 4D light field
also contains the angular direction of the rays. We adopt in
this paper the common two-plane parametrization, and a light
field can be formally represented as a 4D function Ω × Π →
R, (x, y, s, t) → L(x, y, s, t) in which the plane Ω represents the
spatial distribution of light rays, indexed by (x, y), while Π cor-
responds to their angular distribution, indexed by (s, t). Perhaps
the easiest way to visualize a light field is to consider it as a ma-
trix of views (see Fig. 1), also called sub-aperture images (SAI).
Each SAI represents a 2D slice of the light field over the spa-
tial dimensions (x, y). Another common representation of light
fields are Epipolar Plane Images (EPI), which are 2D slices of
the 4D light field obtained by fixing one spatial and one angular
dimension (sx- or yt-planes, see Fig. 1). Applications of light
field include post-capture refocusing [2], free viewpoint render-
ing [1, 3], or depth estimation [4].
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Fig. 1. Examples of light field representations: matrix of sub-
aperture images (SAI) (left); and Epipolar Plane Images (EPI) (right)
shown below and on the right of the center SAI.

Single image super-resolution (SISR) is a major research
topic in image processing which has lead to very advanced
methods [5–14]. Light field super-resolution (LFSR) has thus
also become a very active research area in the more recent years.
In the case of light fields, super-resolution can be applied on the
spatial dimensions, i.e. to increase the SAIs resolution, or on the
angular dimension, i.e. to synthesize new views, or both. We
focus in this paper on spatial LFSR only. Formally, we model
the link between low- and high-resolution light fields as follows:

LL = DαLH (1)

where LH is the high-resolution light field (HRLF) that we
want to reconstruct, LL is the known low-resolution light field
(LRLF), and Dα encodes blurring and downsampling of each
SAI by a factor α.

The LFSR problem described by Eq. 1 is ill-posed with many
possible HRLF LH which can produce the known LRLF LL.
Research from SISR showed that introducing an image prior is a
powerful way to solve this problem, e.g. the popular sparse rep-
resentations [9]. Learning based methods modeling the relation
between known pairs of low- and high-resolution images have
also been successfully applied to SISR [11–13].

A naive approach to LFSR thus consists in applying exist-
ing SISR methods to each SAI independently. However, such
approaches do not take into account the specific 4D light field
structure described above. To address this limitation, Mitra and
Veeraraghavan [15] proposed to model 4D light field patches
with Gaussian Mixture Models (GMMs), assuming the disparity
is constant within each 4D patch. GMMs are learned on a known
set of 4D high-resolution patches with different disparity values.
Low-resolution 4D patches are then super-resolved using a linear



minimum mean square error estimator. Yoon et al. [16] extended
the work of [11] and used a deep-learning based approach to ad-
dress both spatial and angular super-resolution of light fields. In
[17], Farrugia et al. recently proposed to learn a linear subspace
mapping between known low- and high-resolution volumetric
light field patches. The volumetric patches are obtained by stack-
ing together the 2D patches constituting a 4D patch along a 3rd
dimension. The high dimensonality of these volumetric patches
is reduced using PCA, and a mapping is learned between the low-
and high-resolution subspace using ridge regression. The learned
PCA and mapping can then be applied on LRLFs to perform ei-
ther spatial or angular super-resolution. Non-learning based ap-
proaches have also been proposed such as in [18], where Wanner
and Goldluecke introduced a variational framework in which new
high-resolution SAIs are synthesized from known low-resolution
ones using depth information estimated from the EPIs. Recenlty,
Rossi and Frossard [19] proposed an approach inspired by multi-
frame super-resolution [5] coupled with a graph prior to capture
the light field structure, which avoids an explicit disparity com-
putation.

In this paper, we propose to combine the iterative SR-BM3D
SISR method [10], derived from the BM3D single image de-
noising filter [20], and the LFBM5D light field denoising fil-
ter [21], which extends the concepts of BM3D to light fields.
First, the LFBM5D filter is applied on the current estimate of
the HRLF. During this step, 5D patches are first transformed
in a 5D transform domain. Due to the highly redundant nature
of light field patches, the 5D spectrum obtained is very sparse,
and hard-thresholding is further applied on the coefficients. This
step can be interpreted as enforcing a sparse prior on the light
field. Second, back-projection is applied for each SAI of the
light field. Back-projection consists in upsampling the residual
error between the known LF image and the downsampled current
HR estimate. The upsampled residual error is then added back to
the current HR estimate to create a new one. The process iterates
until convergence. Back-projection suffers from known ringing
artifacts, especially for high magnification factors. We propose
in this paper to use image guided filtering to improve this step.

This paper is organized as follows. Section 2 describes in
detail the proposed SR-LFBM5D approach. We evaluate in sec-
tion 3 the performances of our approach against state-of-the-art
methods, followed by conclusion in section 4.

2. SR-LFBM5D

In this section, we describe our method called SR-LFBM5D. We
first recall the main principle of the LFBM5D denoising filter and
how it can be interpreted as a light field sparse coding operator.
We then cast the LFSR problem of Eq. 1 into an optimization
problem based on a sparse prior, and detail the algorithm used to
solve it.

2.1. Light field sparse coding with LFBM5D

The core idea of the LFBM5D filter is to exploit redundancies
over the light field angular and spatial dimensions, as well as
self-similarities occurring in natural images. For that purpose,
5D patches are built from similar 2D patches, and filtered in the
5D transform domain. As the 5D transform is applied on a very
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Fig. 2. 4D patches are obtained by taking disparity compensated
2D patches in the neighboring SAIs with respect to the current ref-
erence 2D patch. 5D patches are finally built by stacking similar 4D
patches along a 5th dimension.

redundant signal, the spectrum obtained is very sparse. Spar-
sity is further enforced by applying hard-thresholding on the 5D
transform coefficients. The LFBM5D ouput is then obtained by
applying the inverse 5D transform on the filtered 5D spectrum.

5D patches are obtained using the following procedure, il-
lustrated in 2. Considering a 2D patch P in a so-called reference
SAI, a 4D patch is first created by finding in each neighboring
SAI the 2D patch closest to P , which can be assimilated to a
disparity compensation step using a block matching algorithm.
Patches whose Euclidean distance is superior to a given thresh-
old τdisp are discarded in order to be robust to occlusions. This
ensures the smoothness and homogeneity of 2D patches taken
along the angular dimensions (also called 2D angular patches,
see Fig. 2), and guarantees to obtain a sparse representation in
the transform domain. We then search for a set of patches similar
to P in the reference SAI such that their Euclidean distance is in-
ferior to a threshold τsim. Finally, the 5D patch is built by stack-
ing along a 5th dimension the 4D patches built from all patches
similar to the reference patch.

The 5D transform consists in practice of three cascaded
transforms: a normalized 2D DCT is applied on the spatial di-
mensions of the 5D patch, followed by a 2D shape-adaptive DCT
(SADCT) [22] applied on the angular dimensions. Finally, a 1D
Haar wavelet is applied on the 5th dimension of the 5D patch.
We illustrate the interest of cascading 2D angular and spatial
transforms in Fig. 3, where the 4D transform spectrum obtained
from the combination of the 2D transforms is clearly sparser
than the 2D transform spectra. The spectum of a 5D patch would
be further compacted when the 1D transform is applied over the
5th dimension.

This succession of localized patch-based operations can be
interpreted as a more global process, as shown in [23] for the
BM3D filter. The authors of [23] formally demonstrate that the
BM3D filtering of a whole image can be understood as a the
projection of this image over a BM3D frame. We extend here
this concept to LFBM5D frames. More precisely, the forward
transform step, also called analysis, is formulated as ωωω = ΦΦΦlll,
where lll is the vector notation of a light field L, the matrix ΦΦΦ is
the analysis frame of LFBM5D, and ωωω is the resulting spectrum.
The inverse transform, or synthesis, is formulated as lll = ΨΨΨωωω,
where the matrix ΨΨΨ is the synthesis frame of LFBM5D.
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Fig. 3. Example of a 4D transform spectrum (bottom right) obtained
for a 4D patch (top left) taken from the Lego Knights light field. The
4D transform is obtained by cascading a 2D spatial transform (bot-
tom left) and a 2D angular transform (top right). In this example the
2D DCT was used for both transforms. Notice that the 4D transform
spectrum is sparser than the individual 2D transform spectra.

2.2. Application to LFSR

The formal frame interpretation of the LFBM5D filter described
above can be used to introduce a sparse prior in the super-
resolution problem defined in Eq. 1. Using vector notations,
the sparse reconstruction of a HRLF lllH is formulated as the
following minimization problem:

min
ω

1

2
‖lllL −DDDαlllH‖22 + λω‖ωωω‖0, lllH = ΨΨΨωωω (2)

where lllL is the known LRLF, the matrix DDDα corresponds to the
blurring and downsampling opetator of Eq. 1, ωωω is the LFBM5D
spectrum, and ΨΨΨ is the LFBM5D synthesis frame. The first sum-
mand in Eq. 2 represents the data term enforcing the coherence
between the HRLF and the LRLF according to the LFSR model
of Eq. 1, while the second summand is a regularization term im-
posing the sparsity of the HRLF. By applying a multiple-criteria
Nash equilibrium technique, the authors of [10] derive the fol-
lowing two-step iterative solution:

Step 1: ωωωi = γ(ΦΦΦllliH , τHT ) (3)

where γ represents a hard-thresholding operator with threshold
τHT =

√
2λω , and i is the iteration index. This step corresponds

to the forward transform and hard-thresholding of the LFBM5D
filter.

Step 2: llli+1
H = llliH + βUUUα(lllL −DDDαllliH) (4)

where llliH = ΨΨΨωωωi is the estimated HRLF obtained after applying
the inverse transform on the hard-thresholded spectrum obtained
at step 1, and UUUα is an upsampling matrix nearly compensating
DDDα. This step corresponds to back-projection, which enforces
the minimization of the data term in Eq. 2. It can be compared
to the well known iterative back-projection algorithm (IBP) [5],

Fig. 4. Back-projection without (left) and with (right) guided image
filtering, α = 4.
with the notable difference that we perform filtering in the loop.
Traditional IBP suffers from known ringing artifacts [6], which
are partially reduced by the filtering step, especially when in-
creasing the number of iterations. However, ringing artifacts can
still be observed for high magnification factors (α = 4) as shown
in Fig. 4.

In this paper we propose to use guided image filtering [24]
to prevent such artifacts from appearing. In fact, we observe that
the ringing artifacts appear around strong edges (see Fig. 4) due
to the upsampling of the low-resolution residual error, and are
propagated through the iterative loop. We choose the guided im-
age filter as it is able to preserve in the filtered output the edges of
a given guidance image. Therefore for each SAI of the light field
we apply the image guided filter to the upsampled low-resolution
residual error, using the initial high-resolution estimate of the
SAI as a guide. We denote this operation light field guided fil-
tering. The image guided filter ensures that the high frequency
added by the back-projection correspond to existing edges in the
original SAI, as shown in Fig. 4, while using the original HRLF
estimate as a guide avoids propagating artifacts over the itera-
tions.

The overall algorithm is summarized in Alg. 1, using
light field variables instead of the vector notations used above.
LFBM5D(L, τHT ) denotes the LFBM5D hard-threshlding of
the light field L using threshold τHT . The light field guided filter
is noted GF (L,G), where L is the light field to filter and G is
the guidance light field.

Algorithm 1 SR-LFBM5D
Input: LL, L0

H , M , Dα, Uα
Output: LMH
for i = 0 . . .M do
LiH = LFBM5D(LiH , τHT )
Lerr = Uα(LL −DαLiH )
if α == 4 then
Lerr = GF (Lerr, L

0
H)

end if
Li+1
H = LiH + βLerr

end for

3. RESULTS

We discuss in this section the performance of the proposed ap-
proach against relevant state-of-the-art methods.

LRLFs are obtained using a Gaussian blurring kernel applied
on each SAI, followed by down-scaling by a factor α = 2, 3, 4.
We use Gaussian filters with standard deviation 1.6 and sizes 7×
7, 9× 9 and 11× 11 for α = 2, 3, 4 respectively. The first HRLF
estimate L0

H is obtained by applying the bicubic filter to every



Table 1. Average performances in PSNR. Best and second
best values highlighted in red and blue respectively.

Lytro Illum α = 2 α = 3 α = 4

Bicubic 27.78 / 0.01 26.08 / 0.01 24.62 / 0.00
SR-BM3D [10] 30.21 / 0.01 28.45 / 0.01 26.58 / 0.01
BM+PCA+RR [17] 29.95 / 0.01 28.55 / 0.01 27.08 / 0.01
GB [19] 29.80 / 0.01 28.65 / 0.01 27.45 / 0.01
Proposed 1st step 30.17 / 0.01 28.62 / 0.01 26.87 / 0.01
Proposed 2nd step 30.25 / 0.01 28.60 / 0.01 26.82 / 0.01

Stanford α = 2 α = 3 α = 4

Bicubic 29.00 / 0.01 26.81 / 0.01 25.06 / 0.01
SR-BM3D [10] 34.10 / 0.01 30.90 / 0.01 28.00 / 0.02
BM+PCA+RR [17] 32.81 / 0.04 30.85 / 0.03 28.73 / 0.02
GB [19] 33.01 / 0.02 31.42 / 0.01 29.44 / 0.04
Proposed 1st step 34.15 / 0.01 31.81 / 0.01 29.10 / 0.02
Proposed 2nd step 34.27 / 0.01 31.77 / 0.01 29.02 / 0.02

SAI of LL. We also use the bicubic filter for the upsampling
operator Uα.

The experiments are conducted on a first dataset of twelve
light fields captured with a Lytro Illum camera taken from the
EPFL [25] and INRIA datasets [26], and a second dataset of
twelve light fields from Stanford captured with a gantry [27].
Following [19], and as we focus on spatial SR, we only used
the 5 × 5 center SAIs of the light fields to reduce the compu-
tation time. For the Lytro Illum dataset, the SAIs of resolution
434×625 were extracted using a modified version of the method
proposed in [28] (see detailed explanations online1). Note that
for the Stanford dataset, the spatial resolution of the SAIs was
cropped to 512× 512 pixels to speed up the experiments.

For the LFBM5D step, we use patches of size 8×8 and 3×3
over the spatial and angular dimensions respectively. A maxi-
mum of 32 patches is retained along the 5th dimension. We set
τdisp = τsim = 3000. Following [10], the threshold τHT varies
with the iterations as a quadratic function from 12α to α. The fil-
ter is applied in the YCbCr color space. For the back-projection
step, we set β = 1.75 as in [10], and we use the bicubic filter to
upsample the residual error. We set the number of iterations to
M = 10, 30, 50 for α = 2, 3, 4 respectively.

We compare our method to the work of [17, 19], denoted
BM+PCA+RR and GB respectively, as these two recent meth-
ods were shown to outperform previous techniques presented in
Sec. 1. We also apply the SR-BM3D method to each SAI inde-
pendently. We evaluate the LFSR performances using the PSNR.
For each light field, the mean PSNR and variance are computed
over all SAIs. As shown in Fig. 5, the method in [19] suffers
from border effects, thus a border of 16 pixels was removed from
each SAI before the PSNR computation. We give in Table 1 the
results for both the Lytro Illum and the Stanford datasets. Note
that we report averaged values over each dataset. Detailed results
are available online1.

Results show that the proposed method clearly outperforms
existing LFSR methods for both datasets for α = 2. For α =
3, our method still performs best on the Stanford dataset, but
only second best on the Lytro Illum dataset. For α = 4, our
method performs second best on the Stanford dataset, but is out-

1https://v-sense.scss.tcd.ie/?p=1551

Original Bicubic BM+PCA+RR
PSNR = 28.57 dB PSNR = 32.47 dB

GB SR-BM3D SR-LFBM5D
PSNR = 32.65 dB PSNR = 34.34 dB PSNR = 34.74 dB

Fig. 5. Visual results of LFSR with α = 2 on the center SAI of the
Lego Knights light field from the Stanford dataset. (Best viewed in
color and zoomed)

performed on the Lytro Illum dataset. This suggests that our
method is better suited than state-of-the-art techniques for light
fields with a wide baseline. We observe that SR-BM3D performs
surprisingly well for α = 2 and even outperforms existing LFSR
methods. Note however that this result does not hold for higher
magnification factors α = 3, 4, which demonstrates the need for
LF dedicated methods. We show visual comparisons on the cen-
ter SAIs of the light field in Fig. 5. We observed that the use
of the guided light field filtering in the back-projection step for
α = 4 gives an average increase in PSNR of about 1dB for both
datasets.

4. CONCLUSION

We introduced in this paper a novel light field super-resolution
method, combining the state-of-the-art SR-BM3D single image
super-resolution filter and the LFBM5D light field denoising fil-
ter. By interpreting the LFBM5D filtering as a sparse coding op-
eration, we can cast the ill-posed super-resolution problem into
an optimisation problem based on a sparsity prior. The algorithm
alternates between the LFBM5D hard-thresholding step and a
back-projection step. In addition, we propose to use light field
guided filtering to reduce the ringing artifacts generated by the
back-projection. Results show that the proposed approach per-
forms especially well for light fields captured with a wide base-
line (such as the Stanford dataset) or low magnification factors.

In order to further improve the performances of our approach
for dense light fields (e.g. captured with a Lytro Illum) and for
high magnification factors, we plan to modify our optimisation
problem to include insights from multi-frame super-resolution,
such as in [19]. An additional hypothesis can in fact be made,
which postulates that a high-resolution SAI can not only gener-
ate a low-resolution SAI at the same angular position, but also of
the neighboring SAIs. This would essentially impact the back-
projection step of our algorithm, where the low-resolution resid-
ual error upsampling would not only come from the correspond-
ing SAI, but also the surrounding ones.

https://v-sense.scss.tcd.ie/?p=1551
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