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ABSTRACT

In recent years, light fields have become a major research topic
and their applications span across the entire spectrum of clas-
sical image processing. Among the different methods used to
capture a light field are the lenslet cameras, such as those de-
veloped by Lytro. While these cameras give a lot of freedom
to the user, they also create light field views that suffer from a
number of artefacts. As a result, it is common to ignore a sig-
nificant subset of these views when doing high-level light field
processing. We propose a pipeline to process light field views,
first with an enhanced processing of RAW images to extract sub-
aperture images, then a colour correction process using a recent
colour transfer algorithm, and finally a denoising process using
a state of the art light field denoising approach. We show that
our method improves the light field quality on many levels, by
reducing ghosting artefacts and noise, as well as retrieving more
accurate and homogeneous colours across the sub-aperture im-
ages.

Index Terms— Light Fields, Lenslet Decoding, Colour
Transfer, Denoising, Plenoptic RAW Processing

1. INTRODUCTION

Light fields aim to capture all light rays passing through a
given amount of the 3D space [1]. Compared to traditional im-
ages representing a projection of light rays on a 2D plane, a 4D
light field also contains the angular direction of the rays. The
light field of a real scene can be captured with different devices
such as a single camera on a moving gantry, an array of cam-
eras, or a plenoptic camera including an array of micro-lenses
in front of its sensor. The latter has received a lot of attention
since the commercialisation by the Lytro company of two succes-
sive models capable of capturing light fields with a dense angular
sampling. A concurrent plenoptic camera design called plenop-
tic 2.0 has also been proposed in [2]. Unlike the former design
(referred to as unfocused), each micro-lens produces a focused
micro-image.

Because of the micro-lens array, the generation of exploitable
images from the RAW sensor data is significantly more complex
than with traditional cameras. Furthermore, there is no consen-
sus on the light field representation to adopt. While plenoptic
2.0 cameras are generally used to directly render images at vary-
ing focus, the unfocused plenoptic cameras are better suited for
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the extraction of sub-aperture images (SAI) with a very wide
depth of field, each corresponding to a viewpoint of the scene.
Since the latter representation is more commonly used for vari-
ous light field applications (e.g. depth estimation, compression),
we consider in our analysis the extraction of SAIs from unfo-
cused plenoptic camera RAW data. Among the different meth-
ods proposed for this task [3–6], the most complete pipeline was
developed by Dansereau et al. [3]. It has been widely adopted by
the light field research community. For example, it has a central
role in the standardisation effort for light field compression as it
is used as part of the JPEG PLENO [7] test set. However, the
extracted views may suffer from many artefacts including noise,
unnatural horizontal stripes, ghosting effects on external SAIs,
colour and brightness inconsistencies between SAIs, inaccurate
colour balance, and important loss of dynamic range. These lim-
itations have a negative impact on most light field applications
such as depth estimation, segmentation, rendering or compres-
sion (see [8] for a comprehensive overview). Furthermore, exter-
nal SAIs containing essential depth information are often ignored
because of extreme distortions. Note that, although the propri-
etary Lytro Desktop software overcomes many of these issues,
it essentially targets the rendering of refocused images, and it is
not suitable for generating an SAI array.

Later research on the subject in [5,6,9–12] has essentially fo-
cused on adapting the demosaicing step which retrieves the RGB
colour components of each pixel from the partial colour informa-
tion actually captured by camera sensors. We believe that a more
global analysis of the pipeline is also necessary.

In this paper, we present an enhanced processing pipeline for
lenslet-based plenoptic cameras. We first propose improvements
within the RAW processing of [3]. In particular, we show how
the devignetting step (i.e. correction of lenslet vignetting) neg-
atively impacts the overall image aspect (colour balance, bright-
ness, loss of dynamic range), and how to correct it. We addition-
ally recommend the use of white image guided interpolations [9]
to reduce the ghosting effect of external SAIs. Based on the
observation that brightness and colour inconsistencies between
SAIs can hardly be corrected in the early stages of the RAW pro-
cessing without introducing other artefacts, we perform a post
processing colour correction step. We finally analyse the noise
level at each step of the process and suggest that additional de-
noising should be applied preferably after the colour correction.

2. PROPOSED PIPELINE
2.1. RAW Light Field Decoding

In this section, we analyse the early steps of the RAW pro-
cessing : the lenslet devignetting, the demosaicing, and the inter-
polations required for compensating misalignments between the
micro-lens array and the sensor grid.



(a) (b) (c)
Fig. 1: Advantages and limitations of the White Image (WI) guided
method of [9]: (a) standard demosaicing [13] and bicubic interpola-
tions, (b) standard demosaicing [13] and WI-guided interpolations,
(c) WI-guided demosaicing and interpolations.

2.1.1. Lenslet Devignetting
In [3], lenset devignetting is performed first as it results in

more uniform brightness over the sensor array and thus, easier
demosaicing. This step simply consists of a pixel-wise division
of the RAW image by a RAW White Image (WI) that exhibits
the pattern of micro-lens vignetting. Since the WI was previ-
ously taken by the same device as the picture to process, this di-
vision step does not only remove the vignetting pattern, but also
implicitly normalises the colour responses of the red, green, and
blue pixels on the sensor. However, the normalisation is not taken
into account by traditional RAW processing [3]. In particular, the
white balance parameters, determined by the camera during the
capture (either automatically or with user interaction) and stored
as metadata, do not apply to RAW data with normalised RGB
responses. In order to obtain the intended colour balance, we
multiply the red and blue pixels of the WI by normalisation fac-
tors provided as metadata of the camera. Note that these factors
may also be obtained by colour calibration of the sensor.

Since the pixel values of the WI are lower than 1 even at
micro-lens centres, the devignetting in [3] also increases the
overall brightness of the light field. Bright areas reaching higher
values than 1 after devignetting are considered as saturated in
the rest of the process, and the information is lost. Therefore, we
also apply a global normalisation of the WI by dividing all the
pixels by its 99.9th percentile (we do not use the maximum value
to exclude hot pixels).

2.1.2. Demosaicing and Interpolations
Previous analysis by David et al. [9] have shown how stan-

dard demosaicing and interpolations introduced both ghosting
artefacts and fading of the colours for the external SAIs. In or-
der to reduce the problem, they adapted those steps by weighing
the contribution of each pixel using the vignetting pattern of the
White Image. Two observations can be made from their results.
Firstly, the ghosting effect is essentially reduced by the adapta-
tion of the interpolation step (see Fig. 1(b)). Secondly, while the
modified demosaicing improves the overall colour consistency
between SAIs, it may also create colour noise (see Fig. 1(c)).
Hence, we suggest that only the WI-guided interpolations should
be used, and we propose in the next section a post-processing
step to enforce colour homogeneity in the light field.

2.2. Colour Correction
To obtain homogeneous colours in the light field, we suc-

cessively process each SAI by performing colour transfer from a
reference SAI designated as palette image. Several propagation

schemes defining the palette image for each SAI and the process-
ing order are proposed in section 2.2.2.

For a given pair of target and palette SAIs, our colour
correction addresses the viewpoint disparity by incorporating
correspondence estimations in the recent colour transfer al-
gorithm of Grogan et al. [14–16] described in section 2.2.1.
Their global approach was found to be more robust to erroneous
correspondences and outperforms existing colour correction
methods [17–19]. In our implementation, coarse-to-fine patch
matching (CPM) [20] was chosen to estimate pixel correspon-
dences between the views since it is both accurate and efficient,
and has been successfully used as an initialisation step for optical
flow computation for light fields by Chen et al. [21]. Once the
pixel correspondences are estimated, we pass their colour values
to the colour transfer algorithm.

2.2.1. Colour Transfer

Given a set of n colour correspondences (c
(k)
t , c

(k)
p )k=1...n

between the target and palette images, where the set of colours
c
(k)
t from the target image should correspond to the colours c(k)p

from the palette after recolouring, Grogan et al. [15, 16] propose
to fit a Gaussian Mixture Model to each set of correspondences
as follows:

pt(x|θ) =
n∑

k=1

1

n
N (x; φ(c

(k)
t , θ), h2I) (1)

and

pp(x) =

n∑
k=1

1

n
N (x; c

(k)
p , h2I) (2)

The vector x ∈ R3 takes values from a 3D colour space, and
each Gaussian is associated with an identical isotropic covariance
matrix, h2I. The colours φ(c(k)t , θ) are obtained by transforming
c
(k)
t by some transformation φ which depends on θ. The goal

is then to estimate the transformation φ that registers pt(x|θ) to
pp(x), and thus transforms the colour distribution of the target
image to match that of the palette image. Grogan et al. propose
letting φ be a global parametric thin plate spline transformation,
and estimate the parameter θ controlling φ by minimising :

C(θ) = −〈pt|pp〉 =
n∑

k=1

1

n2
N (0; φ(c

(k)
t , θ)− c(k)p , 2h2I) (3)

For our application, we found that using the LAB space rep-
resentation of colours gave better results than RGB. We also al-
tered the simulated annealing parameters proposed in [15] to en-
sure that local minima were avoided during optimisation.

2.2.2. Propagation
To guarantee colour homogeneity over the whole light field,

we investigate three propagation schemes. The first is a more
naive approach in which we recolour every SAI in the light field
taking the centre view as palette, as it has the most accurate
colours. This involves computing correspondences between each
SAI and the centre one and passing them to Eqs. (1) and (2)
to perform colour correction. While these correspondences are
accurate in many cases, as the disparity increases over the light
field, fewer accurate correspondences are available which can af-
fect the quality of the recoloured external views.

To combat this, we investigated a second scheme which in-
volves propagating the colours incrementally starting from the



(a) Original RAW decoding [3] (b) Proposed RAW decoding (c) Recoloured
Fig. 2: Overview of all sub-aperture images in a light field. Showcases the differences in appearance between the original and proposed RAW
decoding, and the homogeneity of the colours across views after colour correction.

centre view, along the centre column, and then along each row.
This is achieved by first taking the centre view as palette and
using it to recolour its two outer neighbouring views in the col-
umn. Once corrected, these two views are used to recolour their
outer neighbouring views. This process is repeated until all views
in the column are corrected. Following a similar process, the
colours from the centre column are propagated out to each of the
rows, with the centre view in each row initialised as palette. This
scheme ensures that neighbouring views have very few colour
differences between them.

The final scheme is a combination of the previous two, with
each view (apart from the centre one) recoloured using the colour
correspondences from its already corrected inner column or row
neighbour as well as those from the centre view, and combining
them when passing them to Eqs. (1) and (2), in order to maintain
colour consistency across the light field. The three methods will
henceforth be referred to as ‘centre’, ‘prop’ and ‘prop+centre’.

2.3. Denoising
In addition to the colour artefacts corrected by the previous

step of the proposed pipeline, light fields captured with the Lytro
Illum are known to exhibit camera noise pattern. We thus pro-
pose to apply denoising as a final step. For that purpose, we
use the state-of-the art LFBM5D filter introduced in [22]. This
filter takes full advantage of the 4D nature of light fields by cre-
ating disparity compensated 4D patches which are then stacked
together with similar 4D patches along a 5th dimension. These
5D patches are then filtered in the 5D transform domain, obtained
by cascading a 2D spatial transform, a 2D angular transform, and
a 1D transform applied along the similarities.

Denoising is therefore applied after colour correction, so that
the dark corner SAIs can be denoised together with the rest of
the light field.

3. RESULTS
We present results of our pipeline applied on a subset of the

freely available EPFL [23] and INRIA [24] datasets captured
with Lytro Illum cameras. Detailed dataset composition and ad-
ditional results are also available online1.

3.1. Colour Quality
We first show in Fig. 3 the importance of the simple normal-

isation steps proposed in section 2.1.1 for the colour balance and
overall brightness. For reference, the bottom right part of each

1https://v-sense.scss.tcd.ie/?p=1548

sub-figure shows a refocused image obtained by the Lytro pro-
prietary software with the intended colours (i.e. as displayed by
the camera when taking the picture). Note that the results of [3]
are often wrongly assumed to be gamma corrected, leading to
exaggerated contrasts and colour saturation. For a fair compar-
ison, we performed standard sRGB gamma correction for both
methods.

Regarding colour correction, we determined the best re-
colouring scheme (see Sec. 2.2.2) by comparing their results
using a number of metrics : S-CIELab [25], a global histogram
distance, and a blind noise level estimation [26]. We investigated
other metrics for comparison (PSNR, SSIM [27], CID [28]), but
found that the three presented here were the most comprehen-
sive. To determine the accuracy of the colour correction with
respect to the centre view, we computed the difference between
the centre SAI and each SAI in the light field using S-CIELab
and the histogram distance, and averaged the results over SAIs.
As S-CIELab compares local colour differences between images,
the disparity between SAIs may affect the evaluation. However,
as all methods are compared on the same set of light fields
with the same disparity differences, values are still indicative of
colour correction accuracy. The global histogram metric on the
other hand is more robust to these disparity changes. For a pair
of images, the histogram distance is measured as the average
χ-square differences between their L, a*, and b* histograms,
each computed on 25 bins.

From Fig. 6 we can see that all approaches improve the over-
all colour similarity between the centre view and the remainder
of the light field, with the ‘centre’ scheme marginally captur-
ing the colours of the centre view more faithfully according to
S-CIELab and the histogram distance. However, as previously
mentioned, it displays inaccuracies in some unfavourable cases,
when the scene contains plain textureless colours and accurate
correspondences are difficult to compute (e.g. Color_Chart in
Fig. 4). On the other hand, the ‘prop’ and ‘prop+centre’ schemes

(a) Method [3] vs Lytro Desktop (b) Our method vs Lytro Desktop
Fig. 3: Above red line: central SAI of the light field obtained with (a)
Dansereau et al. [3], (b) Our method. Below red line: refocused im-
age from Lytro Desktop proprietary software (using ‘as shot’ white
balance option).

https://v-sense.scss.tcd.ie/?p=1548


Fig. 4: Recolouring examples. First column shows the centre SAI
(red and blue lines are used to create the EPIs in Fig. 5); second
column is an SAI picked on the border of the light field; third and
fourth columns are the same after recolouring using the ‘centre’ and
‘prop+centre’ schemes respectively.

(a)

(b)

(c) (d) (e) (f)
Fig. 5: Stacked epipolar images showcasing colour differences in the
LFs Bee_2 (a,b,c) and Color_Chart (d,e,f): after our RAW decoding
(a,d), after ‘prop+centre’ recolouring (b,e), and after denoising (c,f).
Dark lines in (a,d) are caused by the dark SAIs in the corner of the
light field (we only excluded the most extreme ones which are com-
pletely black and cannot be corrected). Selected lines are shown in
Fig. 4. As with Fig. 4, best viewed in colour and zoomed in.

produce comparable results to ‘centre’ with respect to S-CIELab
and the histogram distance, and create less noise (Fig. 7). They
also ensure that neighbouring SAIs have consistent colours.
While we found that using the ‘prop+centre’ scheme can some-
times give a more accurate colour correction compared to ‘prop’,
using additional correspondences increases the computational
complexity of the colour correction step, and the decision to use
these additional correspondences is left to the user.

We visually assess the results of our recolouring method in
Figs. 2, 4 and 5. The results are visually pleasing, with smooth
transitions between consecutive views, seen in Fig. 2, and the
colours overall remaining consistent with those in the centre view
(see also Fig. 4). This is particularly visible when computing
epipolar images (as seen in Fig. 5), which consist of stacks of
the same horizontal or vertical line of pixels taken across all the
views of the light field. These images show a clear improvement
in keeping the colours consistent over the whole light field, which
is further improved after the denoising process. Fig. 2 shows that
our colour correction also successfully recolours the dark corner
images in the light field, which can then be taken advantage of
by other processing tools.

3.2. Noise Analysis
In order to quantify the noise reduction, we perform blind

noise level estimation [26] before and after denoising. Assum-
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Fig. 6: Metric comparison, using S-CIELab [25] and histogram dis-
tance. Lower values are better. It shows all three schemes are out-
putting comparable results.
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Fig. 7: Noise level estimated for each light field using [26], before
and after denoising.

ing an Additive White Gaussian Noise (AWGN), we estimate the
noise standard deviation σest for each SAI, and then compute the
average over the whole light field. Although the AWGN model is
a simplification of the actual noise, our intent here is to provide
a relative comparison of the different schemes rather than an ab-
solute noise measure. We report in Fig. 7 the estimated values
for each light field. Results show that overall the colour correc-
tion step can slightly decrease the noise level. However, we ob-
serve that in some cases the noise is amplified (e.g. Color_Chart),
which further justifies applying denoising last. The noise level is
clearly reduced for all approaches after applying the denoising.
As mentioned previously, the ‘centre’ scheme exhibits a higher
noise level than the other two tested approaches, even after de-
noising. A visual comparison before and after denoising is shown
in Fig. 5.

4. CONCLUSION

We have presented a pipeline which aims at substantially im-
proving upon the overall visual quality of SAIs in a light field.
The final results show that every processing step provides neces-
sary and complementary benefits. We feel that providing a way
to enhance the available lenslet camera datasets is necessary as
such a complete approach does not currently exist. Visual inspec-
tion as well as metric comparison show that our method provides
significant improvement on the quality of the light field views,
counteracting the unfortunate side-effects lenslet cameras suffer
from. Furthermore, by allowing the use of a higher number of
views when performing high-level light field processing, such as
depth estimation, segmentation or rendering, we hope to improve
the results of those algorithms.
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