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Abstract—Understanding of visual attention is crucial for
omnidirectional video (ODV) viewed for instance with a head-
mounted display (HMD), where only a fraction of an ODV is
rendered at a time. Transmission and rendering of ODV can
be optimized by understanding how viewers consume a given
ODV in virtual reality (VR) applications. In order to predict
video regions that might draw the attention of viewers, saliency
maps can be estimated by using computational visual attention
models. As no such model currently exists for ODV, but given
the importance for emerging ODV applications, we create a new
visual attention user dataset for ODV, investigate behavior of
viewers when consuming the content, and analyze the prediction
performance of state-of-the-art visual attention models. Our
developed test-bed and dataset will be publicly available with
this paper, to stimulate and support research on ODV.

Index Terms—Omnidirectional video (ODV); virtual Reality
(VR); visual attention; saliency map; visual attention models.

I. INTRODUCTION

Tremendous interest can be observed in academia and
industry these days regarding immersive video technologies
and virtual reality (VR) video. Facebooks purchase of kick-
starter company Oculus, developer of the Oculus Rift head-
mounted displays (HMDs) in a reported US$2bn deal is one
major proof of relevance. VR technology has now been used
by film producers and streaming service providers, delivering
immersive VR video experience using omnidirectional video
(ODV). This emerging video representation can be captured
by omnidirectional multi-camera arrangements and can be ren-
dered through HMDs which allow the viewers to look around
a scene from a central point of view in VR. In order to stay
compatible with traditional (i.e., rectilinear) video pipelines,
ODV is typically produced and stored in a planar representation
(e.g., equirectangular projection (ERP)) and then projected
back onto a sphere surface at rendering time.

Reaching levels of mass market adoption for ODV in VR
applications, however, poses several challenges, of which some
can be resolved by understanding the regions of ODV that
attract the attention of viewers. The limitations of the ODV
technologies are strongly related to the massive volume of
video data that needs to be stored, transmitted and rendered
compared to traditional video. Since HMDs use only a fraction
of an ODV at a time, namely viewport, ODV can be optimized
by predicting where the viewers’ visual attention is concen-
trated at a given point in time. In this context, saliency maps,
which predict viewer’s eye fixations for given content, can be
utilized for ODV. For instance, effective representation [1],
cost-efficient resource utilization [2], compression gain [3]–
[5], high-quality streaming [6], [7], and foveated rendering [8]

would be possible using saliency maps in VR applications.
Similarly, understanding of how to guide visual attention in
VR, which is still an issue for film producers and story-
tellers [9], might be supported by saliency maps. Thus, saliency
estimation plays an essential role in the understanding of the
visual cues that should be considered in VR applications.

To understand the salient regions of ODV viewed in HMDs,
saliency maps can be estimated either by collecting eye fix-
ations during subjective tests or by using visual attention
models. The former is not always feasible because of the time
required and the need to process large amounts of data. On
the other hand, there is currently no dedicated visual attention
model for ODV, mainly due to the lack of ground-truth
datasets. Several visual attention models have been introduced
over the last decade for traditional video, such as [10]–[16].
However, given the interactive look around nature of ODV
consumption, these may not produce accurate saliency maps
for a given ODV.

Although some recent research works stress the importance
of saliency maps for VR [5], [6], [17]–[24], visual attention
modeling for ODV with diverse content characteristics has not
yet been studied sufficiently. Additionally, to our knowledge,
no dedicated computational model exists for predicting salient
regions of ODV in VR applications. Hence, the problem of pre-
dicting visual attention remains an open in the context of ODV.
This problem is also emphasized by professional video service
providers [18]. Motivated by this gap in the VR research, we
analyzed content consumption of ODV viewed in HMDs, and
examined the state-of-the-art computational visual attention
models using a set of uncompressed ODVs. The contribution of
this paper is two-fold. First, we created a dataset which contains
a variety of content with different complexity. Our new dataset
includes viewport trajectories (VT) and visual attention maps
from 17 participants while watching uncompressed ODV. Our
dataset and test-bed are available at12. The developed test-bed
can be used to obtain VTs and visual attention maps without
the need for eye tracking devices, which is an adequate use-
case for many virtual reality applications [7], [25]. Second, we
examine state-of-the-art visual attention models for traditional
video, that are well cited or very recently published, using our
generated dataset. To our knowledge, it is the first time such an
evaluation of visual attention models for ODVs has been done
with a publicly available test-bed and subjective user data. We
expect that our dataset and analysis will be beneficial for future
research in compression, streaming, visual quality assessment,

1https://v-sense.scss.tcd.ie/?p=1994
2https://github.com/cozcinar/omniAttention
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and computational visual attention modeling techniques for
ODV.

The remainder of the paper is organized as follows. Sec-
tion II discusses the related literature on visual attention.
Section III describes the technical details of data collection
and post-processing methods and Section IV presents the
experimental results. Finally, in Section V, conclusions are
drawn with directions for future research.

II. RELATED WORK

To model visual attention, user data must be first gathered
through subjective experiments. A head movement dataset, for
instance, has been created using several compressed ODVs
in [26]. However, estimation and analysis of visual attention
was not part of that work. Eye tracking data for omnidirectional
images (ODIs) was collected by Rai et al. [27] to promote
visual attention modeling for ODIs. Additionally, De Abreu et
al. [19] studied visual attention for ODIs through subjective
experiments. A grand challenge at the ICME conference 2017
stimulated further research in this area, by provding a test-
set and evaluation framework [20]. Assens et al. developed
SaltiNet [21] which is based on a deep neural network for
scan-path prediction trained on ODIs. Their model estimates
the temporal nature of gaze paths when exploring ODIs. Also,
SalNet360 was introduced by Monroy et al. in [22] to expand a
traditional CNN-based saliency estimation algorithm for ODIs.
Another participant team of the ICME 2017 challenge, called
xd qsal, extended their previous saliency model [28] to ODIs.

Several computational visual attention models have been
introduced over the past decade for traditional videos, such
as [10]–[16]. For instance, a graph-theoretic solution in [10],
named graph-based visual saliency (GBVS) was developed by
Harel et al. Their method extracts RGB and motion channels
in order to predict dynamic saliency maps. A simple solution
for visual attention modelling, known as spectral residual (SR),
was proposed in [11]. The method considers the rarity of visual
features by analyzing the log-spectrum of a given content.
Later, Guo et al. proposed the phase spectrum of quaternion
fourier transform (PQFT) [12]. In addition to SR [11], this
model uses the phase spectrum with estimated motion data
to predict spatio-temporal dynamic saliency maps. Fang et
al. in [14] merged the calculated spatial and temporal data into
one saliency map using an entropy-based uncertainty weighting
approach. Furthermore, Rudoy et al. proposed a learning-based
visual attention model [13] which considers a sparse set of
gaze locations. More recently, dynamic adaptive whitening
saliency (AWS-D) was introduced in [15] using the idea
that high-order statistical structures carry perceptual relevant
information. Also, Wang et al. [16] proposed a visual saliency
detection algorithm that incorporates information about motion
boundaries, edges and color.

Considering that no visual attention model exists for ODV so
far, and realizing the importance for VR research, we created a
new dataset including diverse ODV contents and evaluated the
above mentioned state-of-the-art visual attention models that
are currently used for traditional video with our ODV dataset.

Fig. 1: Schematic diagram of the designed test-bed.

III. DATA COLLECTION AND PROCESSING

In this section, we explain our experimental procedure
for user data collection, and the processing methods which
generate visual attention maps from the collected user data.

A. Data collection

1) Test-bed design
First, we designed a test-bed to collect the VTs for a given

set of ODV from the participants. The testbed was implemented
using two APIs, namely, three.js [29] and WebVR [30].
The former enabled us to create and display GPU-accelerated
3D graphics in a web browser. The latter enabled the creation
of fully immersive VR experiences in a browser, allowing us to
display a set of ODV without the use of any specific software
other than a web browser. In our subjective tests, we used the
Oculus Rift consumer version as HMD and Firefox Nightly as
web browser.

The designed test-bed supports replay of various planar
projections of ODV. As the ERP representation is the most
widely used ODV format currently, at this stage, we only
consider ERP as input format. three.js contains all the
necessary objects, i.e., scene, geometry, texture, and camera to
construct a 3D geometry enabling interactive ODV replay in a
browser. For that, a 3D mesh is created defining a sphere with
texture. A given video texture (ODV) is mapped onto the sphere
geometry such that the ODV can be viewed from the center of
the sphere facing outwards e.g., using an HMD. Therefore, the
virtual camera is positioned in the center of the geometry. In a
case of ERP, each point on the sphere is mapped on the planar
surface using coordinates of its longitude (0◦ ≤ θ < 360◦)
and latitude (0◦ ≤ Φ ≤ 180◦). Hence, each row and column
of the texture (i.e., ODV frame) can be respectively represented
by θ and Φ. The developed test-bed can store θ and Φ values
of the viewport center location during a viewing session at
the HMD’s frame refresh rate. Over time a viewport center
trajectory (VCT) is recorded. Fig. 1 illustrates the schematic
diagram of the designed test-bed for this study.

2) Material
We used the following six uncompressed ODVs from the

joint video exploration team (JVET) of ITU-T VCEG and
ISO/IEC MPEG: V = {LRRH, Gaslamp360, left Driving360,
train le, basketball, left Dancing360} [31]–[33]. We selected
only test data with very high resolution (e.g., ≥ 4K×2K) to
provide high quality for a given viewport. For instance, the
LRRH sequence has 4K×2K resolution, and the other five
ODVs have 8K×4K resolution. Each ODV is in ERP and

2018 Tenth International Conference on Quality of Multimedia Experience (QoMEX)



108 110 112 114 116 118 120 122
Spatial index (SI)

85

90

95

100

105

110

115

120
Te

m
po

ra
l i

nd
ex

 (T
I) left_Dancing360

left_Driving360

train_le

Gaslamp360

basketballLRRH

Fig. 2: Video statistics: SI and TI of ODV sequences used in
the experiment.

YUV420p format, and of 10 sec. length. Also, a set of ODV
was chosen to represent a broad range of content complexities.
Spatial and temporal indices, SI and TI, of each ODV as
calculated based on the ITU recommendation P.910 [34], are
shown in Fig. 2, exhibiting a variety of different content types.

3) Participants
In all, 17 participants, 13 males and four females, took part

in our subjective test. Four of the participants were researchers
on the VR project, and the others were naı̈ve viewers. All of
the observers were screened and reported normal or corrected-
to-normal visual acuity.

4) Procedure
Subjective tests were performed as task-free viewing ses-

sions, i.e., each participant was asked to naturally look at each
given ODV. This undirected viewing is the most commonly
used procedure for visual attention modeling. Participants were
seated in a rotatable chair and allowed to turn freely. Each test
session was split into a training and a test session. During
the training session, an additional ODV, representative of the
content, was shown. Then, during the test session, the six test
ODVs were randomly displayed while the individual VCTs
were recorded. We also varied the number of repetitions of
each single ODV in li ∈ L = {l2, l3, l4}. To avoid motion
sickness and eye fatigue, between two successive ODVs, we
inserted a five sec. rest period with a gray screen. Also, before
playing each ODV, we reset the HMD sensor to return the
initial position (θ=180◦ and Φ=90◦). Similar to [17], [19], we
discarded the first fixation recorded for each video, as it added
irrelevant information on the viewing direction.

B. Data processing

We consider a visual attention estimation problem related to
the center point of the viewport of the HMD. Because of the
early stage of development, existing eye tracking technologies
which support HMDs are either expensive or error-prone, and
not generally accessible (e.g., the WebVR API does not yet
support eye tracking capability [30]). Our aim is to provide
a testbed, which is widely usable and applicable without the
need for specific hardware. To this end, as the head tends to
follow eye movements to preserve the eye resting position (eyes

looking straight ahead) [35], we considered the center point
of the viewport as the visual target location. As we further
consider only fixations as described below, the viewport center
and the visual attention are even more likely to be closely
related. Further, viewport information is important for many
virtual reality applications [25]. Consequently, we recorded
VCT user data in all our subjective experiments.

When viewing ODV, users are free to rotate their head to
explore the content. For modeling visual attention we are only
interested in their fixations. We consider a fixation to be given,
if the VCT remains almost stable in a certain location for at
least 200ms, which is a commonly used lower threshold. This
requires clustering the VCT in order to remove influence from
minor irrelevant movements and to reduce sensitivity to noise.
In this work, we used the DBSCAN clustering algorithm [36],
as it allows for setting the cluster neighborhood size τ , which
we set to 5° of any head rotation, and detects noise. Thus a
fixation is recorded if the clustered VCT remains stable over
200ms.

Afterwards, the detected fixations for each participant were
fused together to obtain the final fixation map for the t-th sec.
of a given ODV. More precisely, let v be an ODV in the set
of videos V viewed by participant n ∈ N , where N is set of
participants. The final fixation map, F , for the t-th sec. of a
given v was calculated using a set of participants as follows:

F tv =
1

η

η∑
n=1

f tn,v, (1)

where η is total number of participants in N and f tn,v is the
t-th fixation map for the n-th participant viewed a given v
content.

Finally, a dynamic visual attention map for each ODV
was generated by applying Gaussian filtering to its estimated
fixation sequence Fv . To this end, as there is a gradually
decreasing acuity from the foveal vision towards the peripheral
vision. Each t-th fixation map was filtered using a Gaussian
filter with a certain standard deviation corresponding to the
high acuity vision area. For this, σ was set to 5° in order to
account for the 10° related to gaze shifts and the decreased
visual acuity from the fovea.

IV. RESULTS

In the following, we investigate the behavior of viewers
when consuming ODV with various content properties. Then,
we discuss the prediction performance of state-of-the-art com-
putational visual attention models.

A. Analysis on our database

In this section, we study the behavior of participants in our
VR viewing experiments. In the following, we investigate the
effect of exposition time on the amount of fixations, influence
of the content complexity, and distribution of fixations.

1) How does the exposition time affect fixation?
To study the effect of the exposition time for each ODV,

we computed the average entropy from the corresponding
dynamic visual attention maps with varying repetitions L. We
observe that increasing the number of loops leads to visual
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attention maps with higher entropy, meaning higher variation.
Fig. 3 (a) shows the average entropy for each ODV with various
repetitions.

To further examine the relationship between the exposition
time and fixations, we calculated the median value of the ERP
longitude distance traveled by participants, a measure of how
much users look around. Fig. 3 (b) illustrates these results
depending on the number of loops (i.e., l2, l3, and l4) with the
median absolute deviation shown on top of each bar. As evident
from the figure, except for LRRH and Gaslamp360, increasing
the number of loops does not increase the longitude distance
traveled much. More clearly, repeating the content does not
necessarily lead to more unique fixation points for most ODVs.

Further, we visualize visual attention maps for each ODV
in Fig. 4, which also includes a sample thumbnail for each
ODV. We observe that most fixations are densely concentrated
at particular moving objects.

2) Is the number of fixations similar between different view-
ers?

In this section, we analyze how the number of fixations
varies over participants. Fig. 3 (c) depicts the the average
number of fixations (normalized values) for each ODV using
the box-and-whisker diagram. With this diagram, we can
illustrate the 75th, median, and 25th percentiles which are the
upper, middle, and the lower edges of each box, respectively.
The highest and the lowest average number of fixations are
also given with the min-max line. Here, we observe that
there is a high variation among participants in terms of the
average number of fixations per ODV. This observation can
be exemplified by the Gaslamp360 sequence, which has high
SI and low-value of TI. As it can be seen in Fig. 3 (c), there
is a significant difference between maximum and minimum
number of (normalized) average fixations. To support this
observation, the differences between participants were statisti-
cally measured by the one-way analysis of variance (ANOVA).
After the successful normality test, we found that the average
number of fixations for each participant is significantly different
(p < 0.05) from each other participant for each ODV group.

3) Is there any relation between the amount of fixations and
content complexity?

In this section, we investigate the relation between the
number of fixations and content complexity (in terms of SI
and TI) of a given ODV. We observed that the train le and
Gaslamp360 sequences, which have the lowest TI among all
tested ODVs, received most fixations compared to the other
ODVs. On the other hand, the LRRH sequence, which has the
highest TI with low SI, received the lowest number of average
fixations. This analysis indicates that a direct relationship exists
between motion complexity of ODV and quantity of fixations.

4) Fixation distributions
To better understand the salient regions of each ODV, the

fixation distributions for the latitude and the longitude of the
ERP of each ODV are shown in Figures 5 and 6, respectively.
Looking at latitude, we see that the fixation distribution is
very dense in regions which are above 100°. This can also
be observed in the visual attention maps in Fig. 4. Looking
at longitude, we see that moving objects create most fixations

for each content. As evident from the visual attention maps,
fixations are densely concentrated at particular moving objects,
which appear to be most salient.

B. Analysis of visual attention models

In this section, we investigate the performance of state-
of-the-art computational visual attention models, which were
proposed for traditional video. In this experiment, we consider
seven state-of-the-art computational visual attention models for
video, namely, GVBS [10], SR [11], PQFT [12], Wang et
al. [16], Fang et al. [14], Rudoy et al. [13] and AWS-D [15].
In addition, we included two computational visual attention
models, namely SalNet360 [22] and xd qsal [28], which are
designed for ODI and were participants of the ICME 2017
challenge [20].

In this evaluation, we applied the area under receiver op-
erating characteristic curve (AUC)-Borji and the normalized
scan path saliency (NSS) metrics to measure the accuracy of
estimates. The AUC metric considers a classification problem
and uses the receiver operator characteristic curve to calculate
the accuracy of the predicted visual attention maps in predicting
the ground-truth fixations. NSS estimates the average normal-
ized saliency score by measuring the correspondences between
saliency maps and ground-truth, computed as the average
normalized saliency at fixated locations. Unlike in AUC, NSS
is sensitive to false positives [37]. The selected metrics are
widely-accepted and standard for evaluating saliency models.

Table I reports the mean values of AUC and NSS with their
standard deviations. Note that the model with a higher value
of AUC and NSS can better predict the viewer fixations. We
can see from the table that the method by Wang et al. [16],
which emphasizes the salient object regions in dynamic scenes,
performs very well (e.g., second best and best in terms of
AUC and NSS) compared to other models. To this end, we can
conclude that the motion of salient objects plays an essential
role in the context of visual attention in ODV, and we propose
to take those regions into account for modeling of ODV visual
attention. Furthermore, we evaluate two visual attention models
which focus on ODIs. As a result, these two tested models
perform substantially better compared to the visual attention
models designed for standard video. To this end, incorporating
information on salient object motion into the dedicated ODIs
models can be expected to provide improved visual attention
models for ODV.

V. CONCLUSION

While visual attention maps for ODV can be estimated
through existing prediction models for traditional video, these
models may not produce accurate results for a given ODV due
to the interactive look around nature of ODV consumption.
For development of dedicated visual attention models for ODV,
understanding of the viewing behavior and evaluation of state-
of-the-art visual attention models are beneficial.

In this research, a new test-bed and a new visual attention
user dataset for ODV were introduced, which can be used
for development of new algorithms for processing of ODV.
The developed test-bed can be used to obtain VTs and visual
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Fig. 3: Qualitative analysis of the behavior of participants when consuming ODVs using HMD.

Fig. 4: A sample thumbnail frame with its visual attention for each ODV [31]–[33]. A frame for each ODV from left to right:
LRRH, Gaslamp360, left Driving360, train le, basketball, and left Dancing360.
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Fig. 6: Fixation distribution for the longitude of each ODV. In each polar sub-figure, the longitude value of the ERP and its
number of fixations (normalized) are respectively represented by the angle and the radius of the polar plot.

attention maps without the need for eye tracking devices, which
is an adequate use-case for many VR applications. The dataset
includes VTs of seventeen participants and visual attention
maps for a variety of content with different complexity.

Viewing behavior of participants when consuming ODV
and prediction performance of state-of-the-art visual attention
models were statistically analyzed using the gathered fixations
in the conducted subjective studies. This is, to the best of our
knowledge, the first comprehensive analysis for ODV viewing
and evaluation of prediction models with a publicly available
test-bed and subjective user data.

Our results show that repeating the content does not produce
unique fixation points, and the quantity of fixations depends
on the motion complexity of ODV. Also, we observed that

the average number of fixations significantly differs among
participants. Further, we learned that the evaluated visual
attention models for standard video do not produce accurate
visual attention maps for ODV.

In the future, we plan to further analyze the problem by
investigating motion aspects, and formalize visual attention of
ODV, by developing a new computational model.
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Model ↓ / ODV ↗ LRRH Gaslamp360 left Driving360 train le basketball left Dancing360 Mean

AUC NSS AUC NSS AUC NSS AUC NSS AUC NSS AUC NSS AUC NSS

GVBS [10] 0.80(0.08) 1.41(0.45) 0.52(0.04) 0.92(0.09) 0.80(0.03) 1.22(0.15) 0.47(0.02) 0.54(0.26) 0.52(0.08) 1.03(0.43) 0.66(0.06) 0.88(0.44) 0.62 1.00
SR [11] 0.50(0.01) 0.39(0.10) 0.50(0.01) 0.67(0.31) 0.49(0.01) 0.25(0.15) 0.51(0.01) 0.69(0.15) 0.50(0.01) 0.99(0.64) 0.51(0.01) 0.96(0.41) 0.50 0.66
PQFT [12] 0.51(0.01) 0.32(0.17) 0.51(0.01) 0.69(0.41) 0.50(0.01) 0.34(0.17) 0.51(0.01) 1.29(0.33) 0.51(0.01) 1.42(0.89) 0.50(0.01) 1.29(0.57) 0.51 0.89
Wang et al. [16] 0.60(0.11) 1.67(0.82) 0.59(0.07) 2.13(0.61) 0.51(0.06) 0.70(0.56) 0.55(0.06) 0.74(0.20) 0.61(0.09) 2.40(0.88) 0.69(0.05) 2.36(0.36) 0.60 1.67
Fang et al. [14] 0.51(0.02) 1.33(1.37) 0.51(0.03) 1.02(0.63) 0.54(0.05) 1.49(0.51) 0.51(0.04) 0.31(0.54) 0.51(0.03) 1.17(0.75) 0.52(0.03) 1.53(0.59) 0.52 1.14
Rudoy et al. [13] 0.54(0.08) 1.08(1.31) 0.51(0.06) 0.67(0.70) 0.45(0.10) 0.65(0.70) 0.51(0.04) 0.51(0.51) 0.48(0.04) 0.67(0.96) 0.53(0.07) 1.56(0.46) 0.50 0.86
AWS-D [15] 0.52(0.15) 0.51(1.30) 0.61(0.09) 1.43(0.85) 0.48(0.09) 0.56(0.32) 0.55(0.14) 1.39(0.67) 0.75(0.14) 2.26(0.99) 0.63(0.10) 2.00(0.52) 0.59 1.36

SalNet360 [22] 0.70(0.13) 0.71(0.35) 0.82(0.06) 1.67(0.39) 0.77(0.10) 1.13(0.28) 0.65(0.16) 0.96(0.55) 0.81(0.08) 1.44(0.35) 0.70(0.05) 1.08(0.03) 0.74 1.17
xd qsal [28] 0.69(0.14) 1.79(0.08) 0.68(0.10) 0.89(0.22) 0.78(0.09) 1.02(0.26) 0.77(0.09) 1.02(0.25) 0.59(0.16) 0.88(0.75) 0.72(0.06) 1.38(0.33) 0.71 1.16

TABLE I: Mean(standard deviation) values for saliency detection accuracy of state-of-the-art visual attention models over six
ODVs (best in blue, second best in red).
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