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ABSTRACT

This paper presents a novel sharpness mismatch detection
method for stereoscopic images based on the comparison of
edge width histograms of the left and right view. The new
method is evaluated on the LIVE 3D Phase II and Ningbo
3D Phase I datasets and compared with two state-of-the-art
methods. Experimental results show that the new method
highly correlates with user scores of subjective tests and that
it outperforms the current state-of-the-art. We then extend
the method to stereoscopic omnidirectional images by par-
titioning the images into patches using a spherical Voronoi
diagram. Furthermore, we integrate visual attention data into
the detection process in order to weight sharpness mismatch
according to the likelihood of its appearance in the viewport
of the end-user’s virtual reality device. For obtaining visual
attention data, we performed a subjective experiment with
17 test subjects and 96 stereoscopic omnidirectional images.
The entire dataset including the viewport trajectory data and
resulting visual attention maps are publicly available with
this paper.

Index Terms— 3D quality assessment, sharpness mis-
match detection, 360 video, saliency, virtual reality

1. INTRODUCTION

Stereoscopic 3D (S3D) is a popular instrument to increase
the level of immersion in film entertainment and virtual re-
ality (VR) by providing the viewer two different views of a
3D scene for the left and right eye. Asymmetries between
the left and right view of a stereoscopic image, however, lead
to the so called binocular rivalry [1], which can cause visual
discomfort and degrade the quality of experience (QoE) [2].

The motivation of this paper is to automatically assess the
quality of stereoscopic images in the presence of binocular
rivalry, in particular sharpness mismatch (SM), and to prop-
erly highlight such mismatches in order to reduce efforts and
time within the post-production process. Therefore, we intro-
duce a novel histogram-based SM detection method (HSMD),
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which is one of the main contributions of this paper. We com-
pare the performance of HSMD against two state-of-the-art
methods [3, 4] on two datasets: LIVE 3D Phase II [5] and
Ningbo 3D Phase I [6], and prove that HSMD models sub-
jectively perceived quality more accurately than the current
state-of-the-art in SM detection.

Furthermore, we extend HSMD to omnidirectional im-
ages (ODIs) by extracting patches from the spherical repre-
sentation using the spherical Voronoi diagram as proposed
in [7]. An important aspect of ODIs is that typically only
a portion of the images, the so called viewport, is displayed
when viewed with a head-mounted display (HMD). Thus, the
QoE depends on the viewing direction of the end-user and
thus the visual attention. We incorporate saliency in the de-
tection of SM in order to take visual attention into account,
and to weight SM depending on the likelihood of its appear-
ance in the viewport of the end-users. In the following, we re-
fer to spherical HMSD (S-HSMD) as the extension of HSMD
to ODIs.

Finally, for the computation of the visual attention maps,
we performed a subjective test with 17 participants in order
to collect viewport trajectory data of 96 stereoscopic ODIs.
The images including the viewport trajectory data and the
computed visual attention maps are made publicly available
(see [8]), which is the second main contribution of this paper.
To our knowledge, no datasets with stereoscopic omnidirec-
tional images are available currently.

2. RELATED WORKS

Sharpness mismatch detection. Over the recent years,
binocular rivalry issues and conflicts of depth cues have been
investigated in detail for traditional S3D content, e.g. for
cinema screens [9] and 3D-TV [2, 10], and more recently for
omnidirectional content for HMDs [11].

In [12], a no-reference quality metric for stereoscopic im-
ages was proposed which models the binocular quality per-
ception of the human visual system in the context of blur-
riness and blockiness. Various artifact detection methods, in-
cluding two methods for the detection of sharpness mismatch,
were introduced in [13] and [14]. Both methods rely on dense
disparity estimation, and analyze either high-frequency dif-
ferences between both views [13], or differences of edges us-



Fig. 1: Overview of the processing steps of HSMD

ing a gradient-based method [14]. Liu et al. [4] presented an
automatic no-reference approach to measure the probability
of sharpness mismatch (PSM). They demonstrated that the
proposed metric outperforms the state-of-the-art metrics for
sharpness mismatch. This approach was extended to ODIs
in Croci et al. [7] by extracting Voronoi patches and taking
visual attention into account.
Visual attention. Visual attention modelling and saliency
prediction in traditional visual content are ongoing research
topics for decades [15]. Visual attention for 360 content, how-
ever, is a relatively new research area with only a few publi-
cations in the last decade. The authors of [16] presented a
spherical saliency model to compute saliency maps by fusing
together static and motion features.

More recently, a testbed suitable for the recording of
viewport trajectories of omnidirectional content was intro-
duced in [17]. The authors of [18] introduced a dataset of
head movements of users watching 360-videos. Finally, in
[19], the authors proposed a new method to transform the
collected viewport data into saliency maps.

3. PROPOSED METHOD

3.1. Histogram-based sharpness mismatch detection

Our HSMD approach consists of a pre-processing and an ac-
tual sharpness mismatch detection step as illustrated in Fig-
ure 1. In the pre-processing step, the disparity maps dL2R

from the left to the right view and dR2L in the other direc-
tion, are estimated using the Semi-Global Block Matching
approach [20]. Since the disparity estimation can be noisy
and inaccurate, we apply a consistency check as introduced
in [7], which results in the subsets of pixels ΩL ⊆ IL and
ΩR ⊆ IR in the left IL and right IR image, where each pixel
(x, y) ∈ ΩL has a valid correspondence (x′, y) ∈ ΩR with
x′ = x− dL2R(x, y).

Then, edge pixels eL ∈ ΩL and eR ∈ ΩR are extracted
in both images using the Canny edge detector [21]. For each
edge pixel, the edge width and contrast are estimated using
the method described in [22]. Based on the edge pixels, two
2D histograms HL(ci, wj) and HR(ci, wj) with edge con-
trast bins ci and edge width bins wj are filled for the left
and right view, respectively. Finally, the SM score is ob-

tained by computing the distance between the two histograms.
First, 1D edge width histograms Hi

L(wj) = HL(ci, wj) and
Hi
R(wj) = HR(ci, wj) are extracted from the original 2D

histograms for each edge contrast bin ci. In order to obtain
the SM score independent of the amount of edge pixels, i.e.
the total area of the histograms, we normalize the 1D edge
width histograms with:

Ĥi
[L,R] =

Hi
[L,R]

Ai
, (1)

where Ai = max(AiL, A
i
R), and AiL and AiR are the ar-

eas of the left and right histograms Hi
L and Hi

R: Ai[L,R] =∑
∀j H

i
[L,R](wj).

A well-established metric to measure differences between
two histograms H0 and H1 is the Earth Mover’s distance
EMD(H0, H1) [23]. More precisely, EMD computes the
flow fij which represents the amount that is transferred from
bin i in H0 to bin j in H1. Formally, EMD(H0, H1) is de-
fined as follows:

EMD(H0, H1) = min
{fij}

(
∑
∀i

∑
∀j

fijdij) +

α|
∑
∀i

H0(i)−
∑
∀j

H1(j)|, (2)

subject to the following constraints:

fij ≥ 0,
∑
∀j

fij ≤ H0(i),
∑
∀i

fij ≤ H1(j), (3)

∑
∀i

∑
∀j

fij = min(
∑
∀i

H0(i),
∑
∀j

H1(j)), (4)

where α is a user-defined parameter, and dij is the distance
between the bins i and j. We define dij = |i− j|/N with N
equal to the number of bins.

The final SM score S is then obtained by summing the 1D
histogram distances for each contrast bin ci weighted by the
number of edge pixels as follows:

S =
∑
∀i

EMD(Ĥi
L, Ĥ

i
R) νi, (5)

with

νi =
AiL +AiR∑
∀k
(
AkL +AkR

) . (6)



3.2. Extension of HSMD to omnidirectional images

To extend HSMD to ODIs, we apply the method proposed by
Croci et al. [7]. First patches are extracted from the ODI us-
ing a spherical Voronoi diagram, the subsets of corresponding
pixels between the views of each patch are estimated, and then
each patch is processed independently by HSMD. Next, the
visual attention map is estimated and used in order to weight
each patch and compute the global SM score of the ODI as
follows:

Sglobal =

∑
∀i g(Ψi) Si∑
∀i g(Ψi)

, (7)

where Ψi is the average pixel saliency inside the patch i, and
g is a weighting function that controls the influence of the
saliency and can be freely chosen, e.g. an identity function as
used in the evaluations in Section 4.2. On the other side, the
total amount of patches with SM can be computed with:∑

∀i

1g(Ψi)Si≥ρ, (8)

where 1g(Ψi)Si≥ρ is an indicator function, which is equal to
one if the inequality g(Ψi)Si ≥ ρ is met, and zero otherwise.
ρ is a user-defined threshold set to 0.2 for the experiments in
Section 4.2. We refer to Croci et al. [7] for a more detailed
description of the derivation of these equations.

4. EVALUATIONS

4.1. Evaluation of HSMD

In order to evaluate the performance of the proposed method
for traditional S3D content, we compared HSMD against the
methods introduced in Narvekar et al. [3] (Cumulative Proba-
bility of Blur Detection, CPBD) and Liu et al. [4] (Probability
of Sharpness Mismatch, PSM).

The performance comparison was evaluated based on two
datasets: LIVE 3D Phase II [5] and Ningbo 3D Phase I [6].
These two datasets were obtained by introducing different de-
grees of distortions to some artifact-free stereoscopic refer-
ence images. For each image, the datasets provide a subjec-
tive difference mean opinion score (DMOS) which was ob-
tained through subjective experiments.

For the comparison of HSMD against the state-of-the-art
methods CPBD [3] and PSM [4], we evaluated the correlation
between the subjectively obtained DMOS and the SM scores
of all three methods by fitting a logistic function to transform
the SM scores to DMOS. A well-suited logistic function was
proposed by the Video Quality Expert Group in [24] and is
defined by

DMOSp(S) =
β1 − β2

1 + e
−S−β3‖β4‖

+ β2, (9)

where DMOSp is the predicted DMOS of the SM score S.

LCC SROCC RMSE MAE OR
CPBD [3] 0.8359 0.587 2.054 1.739 -
PSM [4] 0.8542 0.5426 1.945 1.599 -
HSMD 0.8708 0.6296 1.839 1.455 -

Table 1: LIVE 3D Phase II dataset.

LCC SROCC RMSE MAE OR
CPBD [3] 0.7069 0.4307 5.091 4.192 0.02
PSM [4] 0.9276 0.7572 2.913 2.094 0
HSMD 0.9548 0.8205 2.152 1.563 0

Table 2: Ningbo 3D Phase I dataset.

To compare the methods, the following performance
metrics were applied in order to evaluate how well the
logistic function predicts the subjective DMOS: Pearson’s
Linear Correlation Coefficient (LCC), Spearman’s Rank Or-
dered Correlation Coefficient (SROCC), Root Mean Squared
Prediction Error (RMSE), Mean Absolute Prediction Error
(MAE), and Outlier Ratio (OR). LCC and SROCC measure
the prediction accuracy and the monotonicity, respectively.
The larger these two metrics are, the more accurate and
monotonic the prediction is. For RMSE, MAE, and OR, the
smaller the metric, the better the performance of the pre-
diction is. Note that the LIVE 3D Phase II dataset doesn’t
provide the standard deviation of the DMOS, which is neces-
sary to compute the OR.

Tables 1 and 2 show the performance metrics for the two
datasets. The best values are marked in bold. As can be seen,
HSMD outperforms CPBD and PSM for all metrics.

A weakness of HSMD and PSM compared to CPBD is
the need of disparity maps. For this reason, geometrical mis-
alignment may negatively influence the analysis.

4.2. Evaluation of S-HSMD

In order to evaluate S-HSMD, we created a dataset of ODIs,
and performed a subjective experiment to obtain visual atten-
tion data. The ODIs, the viewport trajectory data, and the vi-
sual attention maps are available in the supplemental material
(see [8]).
Dataset. The dataset consists of 96 stereoscopic ODIs col-
lected from different public sources. The resolution of the
ODIs ranges from 1920x960 to 4640x2320 pixels per view.
In order to have a large variety, the dataset has the follow-
ing characteristics: 32 indoor scenes, 51 landscape scenes, 48
scenes containing humans, 47 ODIs with both pole caps cov-
ered, 19 ODIs with only the top pole cap covered and 30 ODIs
without pole caps, 90 ODIs were captured in native 3D while
6 were post-converted to 3D.

The dataset was captured with a range of different 360◦-
rigs. These are: Google Odyssey (7), Jaunt rig prototype I
and II (7), Panocam POD 3D (9), VUZE VR (5), Nokia OZO
(4), customized rig by INVR (3), customized rig by Jumpgate
(4), Omnicam 3D (1), customized rig with Mobius cameras
(1), unknown 3D rigs (49) and post-converted (6).
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Fig. 2: SM detection in 96 ODIs: global SM scores Sglobal and number of patches with SM.

Fig. 3: Examples of ODIs with detected sharpness mismatch. Left to right: visual attention maps (red: high visual attention,
blue: low visual attention), overlaid Voronoi patches (red: high SM score, blue: low SM score), close-ups of left and right view.

Subjective test. To compute the visual attention maps we
used the method described in Croci et al. [7], and we orga-
nized a subjective test with 17 subjects (3 females and 14
males) between 20 and 56 years and with normal stereo vi-
sion. The HMD used in the experiment is the Oculus Rift
DK2. While the subjects were looking at the images we
recorded the viewport center locations on each of the ODIs
at the frequency of 75 Hz, assuming that the center point of
the viewport corresponds to the visual target location of the
user. The test was divided into a training and a test session.
During the training session the subjects got familiar with the
experiment, while a demo image was displayed. During the
test session the 96 ODIs of the dataset were displayed in
random order. Each image was displayed for 15 seconds, and
according to [19], the data captured during the first second
was discarded as it adds trivial information on the starting
viewing direction.
Performance evaluation. For each ODI of the dataset, we
computed the number of patches with SM (Eq. 8) and the
global score Sglobal (Eq. 7), as shown in Figure 2. ODI 57,
an indoor scene without pole caps and captured with the
Panocam POD 3D, has the largest global score (0.2702) and
also the highest amount of patches with detected SM (3). In
ODI 42 and 83, despite a relatively high global SM score, no
patches with SM have been detected. Here, a large number
of patches has high SM scores, but they are still below the
defined threshold for SM detection.

For each ODI we visualized the patch scores using the jet
colormap (see supplemental material [8]). Figure 3 shows ex-
emplary the visual attention maps and the visualization of the
patch scores for ODI 51 (Nokia Ozo) and ODI 57 (Panocam
POD 3D). As illustrated in the close-ups in Figure 3, SM

was correctly detected in ODI 57. During the evaluation, we
discovered that our approach also detects asymmetric distor-
tions like glares, stitching/blending artifacts, and contamina-
tion. ODI 51 shows exemplary the detection of asymmetric
glares.

5. CONCLUSION

We proposed a new histogram-based method for SM detection
in S3D content (HSMD), compared the performance against
two state-of-the-art methods (CPBD, PSM) on two datasets,
and proved that HSMD models subjectively perceived quality
more accurately than the current state-of-the-art in SM detec-
tion. Then, we extended HSMD to omnidirectional images
(S-HSMD) and integrated saliency to weight SM according
to the visual attention of end-users. The performance of S-
HSMD was evaluated on a dataset of 96 ODIs, and the re-
sults show that S-HSMD detects SM and related asymmet-
ric distortions like asymmetric glares quite well. In order to
obtain visual attention data of the dataset with 96 ODIs, we
performed a subjective test with 17 participants. The ODIs
including the viewport trajectory data and the visual attention
maps are publicly available with this paper (see [8]). To our
knowledge, it is the first time that a dataset with stereoscopic
omnidirectional content has been provided.
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