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ABSTRACT

In this paper, we propose a method for capturing High Dynamic
Range (HDR) light fields with dense viewpoint sampling. Anal-
ogously to the traditional HDR acquisition process, several light
fields are captured at varying exposures with a plenoptic camera.
The RAW data is de-multiplexed to retrieve all light field view-
points for each exposure and perform a soft detection of saturated
pixels. Considering a matrix which concatenates all the vector-
ized views, we formulate the problem of recovering saturated
areas as a Weighted Low Rank Approximation (WLRA) where
the weights are defined from the soft saturation detection. We
show that our algorithm successfully recovers the parallax in the
over-exposed areas while the Truncated Nuclear Norm (TNN)
minimization, traditionally used for single view HDR imaging,
does not generalize to light fields. Advantages of our weighted
approach as well as the simultaneous processing of all the view-
points are also demonstrated in our experiments.

Index Terms— High Dynamic Range (HDR), Light Fields,
Low Rank Matrix Completion, Weighted Low Rank Approximation.

1. INTRODUCTION

The emerging technologies in light field capture and HDR imag-
ing allow increased freedom for content creation and manipula-
tion by producing a richer description of a scene than traditional
images. For instance, light fields make it possible to change
the focus after taking a picture and HDR images can be freely
re-exposed without unveiling either noise in dark areas or satu-
rated pixels in the bright parts of the image. A light field is typ-
ically represented as an array of viewpoints. Many capture sys-
tems have been designed, including camera arrays, single cam-
eras mounted on moving gantries and plenoptic cameras with a
micro-lens array placed in front of the sensor. Regarding HDR
images, their acquisition generally involves taking several pic-
tures of the scene at different exposures. A large panel of meth-
ods have been developed for merging the captured images into an
HDR one, including patch-based methods [1–3], Low Rank Ma-
trix Completion (LRMC) [4–7], and more recently deep learn-
ing [8]. A comprehensive review of the subject is provided in [9].

While both HDR and light field imaging have received a lot
of attention, only a few attempts have been made at combining
these technologies. Manakov et al. [10] have developed a cam-
era add-on capable of transforming a standard camera into either
a HDR or a light field camera. In [11, 12], a focused plenoptic
camera with a micro-lens aperture pattern is designed to capture
an HDR image in a single shot. However, the authors of [10–12]
do not discuss the simultaneous HDR and light field capture.

Fig. 1. HDR Light Field acquisition pipeline.

Based on a camera array setup, the method in [13] is able to cap-
ture HDR light field videos by varying the exposure time both
sequentially (between successive frames) and spatially (over the
different cameras). Note that the sparse view sampling resulting
from the large baseline of camera array devices causes strong an-
gular aliasing when generating refocused images from the light
field (i.e. sharp structures in the out of focus areas). This issue is
observed in the results of [13]. Similarly, related methods in mul-
tiview HDR capture [14] are not suitable for light field rendering
that require dense viewpoint sampling. Finally, Li et al. [15] cap-
ture multiple exposures with a plenoptic camera and merge them
into a HDR light field by applying directly the method of De-
bevec and Malik [16] to 4D light fields instead of 2D images.
This can be seen as treating each viewpoint independently. How-
ever, the method in [16] is known for requiring many different
exposures with overlapping well-exposed areas, which compli-
cates the acquisition task. Furthermore, the large amount of data
to process increases the computational load, particularly for light
fields with densely sampled viewpoints.

In this paper, we propose a new HDR light field acquisition
method based on multiple plenoptic captures (typically two or



three) with varying exposure as depicted in Fig.1. By taking
the highest exposure as a reference, generating the HDR light
field amounts to recovering the saturated areas using the lower
exposure captures. For that purpose, soft detection of the satu-
rated pixels is performed from the RAW data. It accounts for
the fact that in practice, sensor response is not linear close to
saturation. The whole set of views (all sub-aperture images at
all exposures) is then arranged in a matrix where each column
is a vectorized view. The matrix is completed with Weighted
Low Rank Approximation (WLRA) naturally exploiting the re-
dundancies between views. General background on WLRA can
be found in [17]. In our approach, the problem is solved by ex-
tending the matrix completion algorithm of [18] to non-binary
weights, thus accounting for the soft saturation model. We show
that our non-binary approach better handles the transition be-
tween the saturated and non-saturated areas. Furthermore, unlike
the the Truncated Nuclear Norm minimization previously used in
several HDR imaging methods [4–7], our rank minimization suc-
cessfully applies to light fields where the rank is expected to be
higher than 1 because of the parallax. We additionally discuss
the advantages of processing all the viewpoints simultaneously.

2. RAW DATA PROCESSING
2.1. De-multiplexing and Soft Saturation Detection
The plenoptic RAW data is first de-multiplexed into light field
views by adapting the method in [19] (we use the enhance-
ments in [20]). In order to exploit the full dynamic range
of each captured light field, we removed the clipping opera-
tions previously used for pixels close to saturation. Instead,
soft saturation detection is performed directly on sensor data
(i.e. before the devignetting and demosaicing steps of [19]).
For a pixel of normalized value x, we compute its saturation
s(x) = min((x+ (1� �))12; 1) as illustrated in Fig.2. In prac-
tice, even if a pixel is not fully saturated (x < 1), neighboring
pixels associated to the other color components on the bayer
pattern may saturate. Hence, the level of full saturation � is set
to 0:9 to account for unreliable colors of high pixel values.

Fig. 2. Soft saturation detection model.
Similarly to the color data, the sensor saturation image is de-

multiplexed using [19] (without devignetting and demosaicing)
to obtain a saturation map of each light field view.

2.2. Construction of Matrices for WLRA
In order to cope with possible movements of the camera when
capturing the different exposures, a homography alignment is
performed. For fast computations, homography parameters are
determined only from the central views of the high and low ex-
posure light fields employing homography based low rank ap-
proximation (HLRA) [21]. All the views of the low exposure
light fields are then aligned to the high exposure one using the
same homography. Prior to the WLRA, we convert RGB data to
luminance Y and CIE chromaticity components u0v0. Indepen-
dent processing of the Y , u0 and v0 components has been shown
in [18] to be advantageous both in terms of quality and comput-
ing speed for light field completion with low rank matrix approx-
imation. Additional conversion of the saturation s into weights w

is also necessary to perform weighted low rank approximation:

w =
1� s

s+ 1=wmax
: (1)

The non-saturated pixels (s = 0) are thus associated to the maxi-
mum weight wmax indicating a high confidence, while the fully
saturated pixels (s = 1) have a null weight. In our experiments,
we use wmax = 100.

Finally, weights and image data are arranged into respective
matrices W and M 2 Rm�n such that each column contains a
vectorized light field view (n is the total number of views includ-
ing all exposures and m is the number of pixels per view). In the
case where an object is over-exposed even in the lowest expo-
sure, some rows of the matrix may have only unknown elements
(zero weight). This may result in arbitrary completed values in
these areas. In order to avoid this situation, the weights of all the
views of the lowest exposure are set to wmax.

3. WEIGHTED LOW RANK APPROXIMATION
3.1. General Formulation
Our WLRA method generalizes the matrix completion algorithm
in [18] to the case of non-binary weights. While most methods,
relying on the results of [22], solve a simpler convex problem
by minimizing the nuclear norm (i.e. sum of singular values),
the algorithm in [18] keeps the rank in the objective function
and solves the problem using the Alternating Direction Method
of Multipliers (ADMM) [23]. We use the same approach as it
was shown to outperform conventional matrix completion for the
closely related light field inpainting application. Given the ma-
trix M to approximate, a global noise tolerance parameter �, and
the element-wise weight matrix W, the problem formulation is:

min
X

rank(X)

s.t. X = Z

kW � (Z �M)k2F � �;
(2)

where the operator � is the element-wise multiplication. The in-
troduction of the matrix Z and the constraint X = Z makes it
possible to use the Alternating Direction Method of Multipliers.
The constraint X = Z is taken into account by defining the aug-
mented Lagrangian function:

L(X;Z;�; �) = rank(X) + Tr(�>(X � Z)) +
�

2
kX � Zk2F ;

(3)
where � is a matrix of lagrangian multipliers and � is a positive
scalar. At each iteration k, the ADMM algorithm for our WLRA
problem then consists in updating X, Z, �, and � as:

Xk = arg min
X

L(X;Zk�1;�k�1; �k�1); (4)

Zk = arg min
Z s.t. kW�(Z�M)k2

F��
L(Xk; Z;�k�1; �k�1); (5)

�k = �k�1 + �k�1 � (Xk � Zk); (6)
�k = t � �k�1 (with t > 1); (7)

where t is a parameter controlling the tradeoff between accurate
minimization (t � 1) and fast convergence (t� 1). For our HDR
light field application, we use t = 1:1 and t = 4 respectively for
the luminance and the chromaticity components.

In the following subsections we describe how to efficiently
solve the X and Z sub-problems introduced in Eqs. (4) and (5)
respectively. For simplicity of notation, the iteration indices k
are ignored in the rest of the paper.




