
Automatic Palette Extraction for Image Editing

Mairéad Grogan, Matis Hudon, Daniel McCormack, Aljosa Smolic

School of Computer Science and Statistics, Trinity College Dublin

RGB RGB RGB RGB RGB

LAB LAB LAB LAB LAB

Figure 1: Palettes generated by our approach in the RGB and LAB spaces.

Abstract

Interactive palette based colour editing applications have grown in popularity in recent years, but while

many methods propose fast palette extraction techniques, they typically rely on the user to define the number

of colours needed. In this paper, we present an approach that extracts a small set of representative colours

from an image automatically, determining the optimal palette size without user interaction. Our iterative

technique assigns a vote to each pixel in the image based on how close they are in colour space to the colours

already in the palette. We use a histogram to divide the colours into bins and determine which colour occurs

most frequently in the image but is far away from all of the palette colours, and we add this colour to the

palette. This process continues until all pixels in the image are well represented by the palette. Comparisons

with existing methods show that our colour palettes compare well to other state of the art techniques, while

also computing the optimal number of colours automatically at interactive speeds. In addition, we showcase

how our colour palette performs when used in image editing applications such as colour transfer and layer

decomposition.

Keywords: Palette Extraction; Image Editing; Colour Editing; Colour Theme;

1 Introduction

The manipulation of colours in images is one of the most important problems in many computer vision appli-

cations, however using commercial colour manipulation toolboxes is often arduous for non-experts. As with

many image processing problems, there is also a natural trade-off between a tool’s ease of use and the actual

result quality and expressiveness one can obtain. A pioneering colour editing algorithm proposed by Reinhard

et al [Reinhard et al., 2001], created a way to transfer the colour feel of a palette image to a target image, re-

moving the need to apply a series of edits to get the desired result. Since then, many other colour transfer

approaches have been proposed based on histogram matching, Gaussian mixture modelling and optimal trans-

port [Pitié et al., 2005, Tai et al., 2005, Grogan and Dahyot, 2017, Papadakis et al., 2011, Ferradans et al., 2013,

Bonneel et al., 2015].



When an example image with the desired colour distribution is not readily available, interactive colour edit-

ing approaches give the user the ability to determine what the final recoloured image will look like. Edit propa-

gation techniques have been popular for many years, and allow the user to create scribbles on different regions

of the image, indicating how they should be recoloured [An and Pellacini, 2008, Chen et al., 2014]. Recently,

palette based recolouring methods have also become very popular, allowing the user to recolour an image by

changing a small palette of colours that represent its colour distribution [Chang et al., 2015, Zhang et al., 2017,

Grogan et al., 2017]. Some examples of such palettes can be seen in Figure 1. Chang et al. [Chang et al., 2015]

proposed one of the first palette based recolouring techniques, and provide an easy to use interface that al-

lows the user to recolour images in real time. Zhang et al. [Zhang et al., 2017] also propose a palette based

recolouring method that decomposes the colours of each pixel in the image into a linear combination of the

palette colours. They show that their technique is free from the artifacts seen in [Chang et al., 2015]. Askoy et

al. [Aksoy et al., 2017] propose a similar method for image editing, but extend it further by splitting the image

into a number of layers, with each layer containing colours similar to one of the palette entries. They show that

these layers can be used for image compositing, image recolouring and green screen keying.

As many recent recolouring and image editing approaches are based on colour palette representation, there

is no denying that in these cases the colour palette generation is key to a successful result. While many methods

propose fast palette extraction techniques, they often rely on the user to define the actual number of colours

for populating the palette. There is a lack of fully automatic methods for high quality, efficient palette gener-

ation from images. In this paper we propose a fast and fully automatic approach for extracting representative

colour palettes from images. Our method automatically finds the right number of representative colours of an

image and generates palettes suitable for colour transfer and alteration methods. The remainder of this paper

is organised as follows: In Section 2 we discuss previous palette extraction methods and present our proposed

technique in Section 3. We show that our technique compares well to other state of the art methods in Section

4 and finally present our conclusions and suggestions for future work in Section 5.

2 State of the Art

A palette should typically consist of the most representative colours in the image, and the correlation be-

tween palette colours should be low. The palette should also contain a moderate number of colours - too few

will limit the users ability to properly edit the image, and too many can make editing cumbersome. Early

works in palette extraction include O’Donovan et al. [O’Donovan et al., 2011], who use a dataset of user rated

palettes to develop a technique for palette generation. However, their method tends to perform poorly on

natural photographs, as shown in [Chang et al., 2015], and can take over a minute to compute. Later, Lin et

al. [Lin and Hanrahan, 2013] proposed a technique that worked well on natural images, but again it is slow to

compute and like O’Donovan et al., only generates palettes with 5 colours. Shapira et al. [Shapira et al., 2009]

propose to generate a model based on a Gaussian mixture model, but again computation is slow, taking around

10 seconds to compute.

Both Chang et al. [Chang et al., 2015] and Zhang et al. [Zhang et al., 2017] introduce a k-means variant

for palette extraction. Both techniques first reduce the colours to be processed by dividing the colours in the

image into histogram bins and compute the k-means algorithm on the mean colours of each bin only. They also

propose to initialize the k cluster centres of the k-means algorithm so that the palette results are deterministic

- they select the k mean colours that represent the most pixels in the image and add a constraint to ensure that

the k cluster centres are far apart. The k-means algorithm is then computed to find k palette colours. Zhang

et al. also add a step which ensures that two significant, but similar, colours in the image do not get merged

into one palette entry, while Chang et al. propose to discard very dark palette colours as they can be redundant

when recolouring. However, both of these techniques require a predefined palette size k.

Aksoy et al. [Aksoy et al., 2017], on the other hand, automatically determine the number of palette entries

that the input image should have. Their method iteratively selects pixel colours and adds them to the palette

until all of the colours in the image are well represented. Again, they use a 3D histogram to divide up the

pixel colours of the image. Each pixel is assigned a vote, with a higher vote given to pixels that are not well



Figure 2: Our iterative method continues to add colours to the palette until all pixels are well represented.

Bottom row: Binary masks indicate the votes of each pixel based on the current palette. Top row: The masks

are overlaid on the original image to highlight what colours are still unrepresented by the palette.

represented by the current palette, and the histogram bin with the highest vote is used to determine the next

colour to be added to the palette. However, the palettes generated can have quite a large number of colours

and the computation can take several seconds. In this paper, we combine the advantages of several palette

generation methods and propose a technique which automatically determines a palette of colours from an

image at interactive speeds, allowing users to use it immediately to edit the image.

3 Palette Extraction

Similar to Aksoy et al. [Aksoy et al., 2017], we use a greedy iterative scheme which continues to add colours

to the palette until all pixels in the image are well represented (see Fig 2). Our first step is to divide the colours

in the image into 10×10×10 bins. Each pixel p in the image is then assigned a vote v p , based on how far the

colour p is from the colours {ci }i=1,..n in the palette. The vote v p is computed as follows:

v p
=

{

0, if d(p,ci ) < τ1 for any ci .

1, otherwise.
(1)

where d(x, y) is the Euclidean distance between x and y and τ1 is a fixed threshold. In this way, only pixels that

are far enough away from the colours in the palette will be given a vote of 1. Figure 2 presents masks indicating

the votes of each pixel for a given palette. Pixels with a vote of 1 are coloured black in the mask, while those

with a vote of 0 are coloured white. The votes of the pixels in each bin are summed, and the bin b with the

highest vote is computed. The next palette colour ci is selected from bin b as follows:

ci = argmax
p∈b

Sp (2)

where Sp is the number of pixels in the 20×20 neighbourhood of p that also lie in the bin b. We continue to

add colours ci to the palette in this way until the number of pixels in the bin with the highest vote is less than a

threshold τ2.

This differs from the technique proposed by Aksoy et al. [Aksoy et al., 2017] in that they compute a vote

vp for each pixel p based on the pixel’s representation score r p . This representation score is more complex

to compute and is used to determine whether a given pixel’s colour can be created by combining the colours

already in the palette. Colours that can be created in this way will not be added to the palette. While this is

important when splitting an image into additive layers, it is not necessarily useful when generating a palette

for image recolouring. We therefore simplify their voting system by taking into account only how far a given

pixel is from the other palette colours. This reduces the computation time significantly while still ensuring that

a high quality palette is generated. The parameter τ1 is used to ensure that palette colours stay reasonably far

apart in the colour space and τ2 ensures that colours are only added to the palette when they represent a large

enough portion of the image.



4 Experimental Results

4.1 LAB vs RGB

We tested our palette extraction technique in both the LAB and RGB spaces, setting τ1 = 0.25 in LAB and

τ1 = 0.45 in RGB. In both cases τ2 = m ×n/1000, where m and n are the width and height of the image

respectively. In Figure 1 we compare the palettes generated in both colour spaces. In general, we found that

both colour spaces created similar palettes, or palettes that differed in size by one colour (Fig 1, col 1-4) . In

some cases we found that one of the colour spaces generated a more descriptive palette than the other, as can be

seen in Figure 1, column 3. Here, the RGB palette includes blue and yellow colours, which are absent from the

LAB palette. This is because blue and yellow lie too close to the grey and green palette colours in LAB space,

and so are discarded when these palette colours are added. This is one of the drawbacks of the binary voting

system proposed in Equation 1 and future work could concentrate on changing the value of τ1 dynamically to

ensure that significant colours are not discarded. As there is very little difference between the colour spaces, in

the remainder of this paper we chose to present the results of our method computed in the LAB space.

4.2 Comparison with other methods

In Figures 3 and 4 we compare our palette generation to the k-means algorithm (computed in LAB space) and

the palette extraction techniques proposed by Chang et al., Aksoy et al. and Zhang et al. [Chang et al., 2015,

Aksoy et al., 2017, Zhang et al., 2017]. As our method estimates the number of colours automatically, for

comparison when using k-means and the algorithm proposed by Chang et al., we estimate palettes with the

same number of colours as ours. Note that Chang et al. also set the maximum number of palette colours

allowed to 7 (see row 2, column 4 of Figs. 3 and 4). Both Zhang et al. and Aksoy’s et al’s palette results are

sourced from their papers [Zhang et al., 2017, Aksoy et al., 2017].

From both figures we can see that our colour palettes are very similar to Chang et al’s technique, although

their algorithm cannot compute the number of palette colours automatically. In many cases the k-means algo-

rithm performs similarly to the other palette extraction techniques, however it also requires a predefined palette

size k and the results are non-deterministic. We can also see that in some cases, important colours are missing

from the k-means palettes. For example, in row 1, column 4 of Figure 4, a brown palette colour is missing.

Similarly, in row 1, column 4 of Figure 3, a bright red palette colour is missing. In Figure 3 we again see

that our palette extraction is very similar to Zhang et al’s, and both their technique and ours capture brighter

colours that are sometimes missing from Chang et al’s palette. Again, however, the user must indicate how

many colours should appear in the palette. In comparison, Aksoy et al’s method correctly identifies the main

colours of the image (see Fig 4). However, in some cases too many palette colours are detected when fewer

would be sufficient (see Fig 4, row 2, col. 1). While a large number of palette colours may be suitable for image

decomposition, many palette entries can become cumbersome when used for colour editing.

In terms of computation time, Aksoy et al’s algorithm is the slowest, taking an average of 9 seconds. In

comparison, k-means, our algorithm, and those of Chang et al. and Zhang et al., are much faster, taking an

average time of 0.2, 0.4, 0.06 and 0.06 seconds respectively, ensuring that the palette can be presented to the

user in real time when used for editing.

4.3 Size of the palette

The size of the estimated palette is essential to most use-cases. As stated by Chang et al., a moderate size of

palette is paramount to a good recolouring - too small a size might cause an inaccurate representation of some

colours, while a palette that is too large could promote correlations between different palette colours and make

it difficult to achieve the desired colour editing result. In Zhang et al’s method, users are allowed to choose

the palette size according to their needs, therefore the results presented in their paper show different palette

sizes (chosen manually by users) for multiple input images. We tried our fully automatic palette generation

method on their data and found the number of palette colours that our algorithm automatically extracts from



Ours Ours Ours Ours

Chang Chang Chang Chang

Kmeans Kmeans Kmeans Kmeans

Zhang Zhang Zhang Zhang

Ours Ours Ours Ours

Chang Chang Chang Chang

Kmeans Kmeans Kmeans Kmeans

Zhang Zhang Zhang Zhang

Figure 3: Comparison between our technique, Chang et al’s technique [Chang et al., 2015], the k-means algo-

rithm applied in the LAB space (KM), and Zhang et al’s palette extraction technique [Zhang et al., 2017].

their images is often very close to what a human user would naturally select. Also, as can be seen in Figures 3

and 4, the colours selected by both our algorithm and theirs are very similar. On average over the 15 images

presented in [Zhang et al., 2017], the difference between the number of manually selected palette colours versus

our method is less than one.

4.4 Applications

In this section we also explore the use of our extracted palettes for both recolouring and layer decomposition.

In Fig 5, row 1, we present the results of a palette based image recolouring technique [Grogan et al., 2017]

which takes as input an image, a palette of colours generated from the image, and an edited palette indicating

which colours in the image should change after recolouring. For example, in the case of the yellow flower (Fig

5, right), the yellow palette colour was changed to red, indicating that the yellow flower should become red. In

both cases the recolouring results are successful using our palette as input.

As previously mentioned by Chang et al. [Chang et al., 2015], including purely black or white palette entries

is often not desirable when they are being used as part of an image recolouring application, as making changes

to very dark or bright colours in an image can create unwanted artifacts in the recoloured result. In order to

compare with Aksoy et al. we have included all palette entries in this result section, but black and white palette

colours could easily be removed before presenting them in a recolouring application.

In Figure 5, rows 2 and 3, we present the layers that are generated when our palette of colours is used as



Ours Ours Ours Ours

Chang Chang Chang Chang

Kmeans Kmeans Kmeans Kmeans

Aksoy Aksoy Aksoy Aksoy

Ours Ours Ours Ours

Chang Chang Chang Chang

Kmeans Kmeans Kmeans Kmeans

Aksoy Aksoy Aksoy Aksoy

Figure 4: Comparison between our technique, Chang et al’s technique [Chang et al., 2015], the k-means algo-

rithm applied in the LAB space, and Aksoy et al’s palette extraction technique [Aksoy et al., 2017].

input in Aksoy et al’s colour unmixing method. This technique takes an image and palette as input and for each

palette colour generates a layer containing the colours in the image that are similar to it. Combining all of the

layers recreates the input image. Although the original method proposed by Aksoy creates palettes with a large

number of colours to ensure that the colours in each image layer are very similar, in this figure we can see that

even using our palette of colours, which is smaller than that of Aksoy et al., the layers created are reasonably

coherent in terms of colour, and can be easily used in other image editing tasks such as image compositing and

colour editing.

5 Conclusion and Future Work

We have presented an approach for fast, automatic palette extraction from images using an iterative approach

which continues to add colours to the palette until the colours in the image are well represented. We have

shown that palettes generated using our approach are similar to other palette extraction techniques, and the

optimal number of colours computed is highly correlated with the number of palette colours selected by users in

[Zhang et al., 2017]. While our technique is similar to that of Aksoy et al., we have simplified the computational

cost to ensure that the palette can be extracted quickly, and reduced the number of palette colours that they

estimate to ensure that the palette is not too cumbersome when used in applications such as image recolouring.

Future work will investigate ways to extend the voting system to ensure that important colours that are within

a distance τ2 of each other, but are still reasonably different, do not get merged into one palette colour.



Input image Recoloured image Input image Recoloured image

& palette & edited palette & palette & edited palette

Computed layers Computed layers

Figure 5: Top: Recolouring results using a palette based image recolouring technique [Grogan et al., 2017].

Bottom: The layers generated when our palette of colours is used as input in Aksoy et al’s colour unmixing

algorithm [Aksoy et al., 2017].

Acknowledgments

This publication has emanated from research conducted with the financial support of Science Foundation Ire-

land (SFI) under the Grant Number 15/RP/2776.

References

[Aksoy et al., 2017] Aksoy, Y., Aydın, T. O., Smolić, A., and Pollefeys, M. (2017). Unmixing-based soft color

segmentation for image manipulation. ACM Trans. Graph., 36(2):19:1–19:19.

[An and Pellacini, 2008] An, X. and Pellacini, F. (2008). Appprop: All-pairs appearance-space edit propaga-

tion. In ACM SIGGRAPH 2008 Papers, SIGGRAPH ’08, pages 40:1–40:9, New York, NY, USA. ACM.

[Bonneel et al., 2015] Bonneel, N., Rabin, J., Peyre, G., and Pfister, H. (2015). Sliced and radon wasserstein

barycenters of measures. Journal of Mathematical Imaging and Vision, 51(1):22–45.

[Chang et al., 2015] Chang, H., Fried, O., Liu, Y., DiVerdi, S., and Finkelstein, A. (2015). Palette-based photo

recoloring. ACM Transactions on Graphics (SIGGRAPH), 34(4).

[Chen et al., 2014] Chen, X., Zou, D., Li, J., Cao, X., Zhao, Q., and Zhang, H. (2014). Sparse dictionary

learning for edit propagation of high-resolution images. In 2014 IEEE Conference on Computer Vision and

Pattern Recognition, pages 2854–2861.

[Ferradans et al., 2013] Ferradans, S., Papadakis, N., Rabin, J., Peyre, G., and Aujol, J.-F. (2013). Regularized

discrete optimal transport. In Kuijper, A., Bredies, K., Pock, T., and Bischof, H., editors, Scale Space



and Variational Methods in Computer Vision, volume 7893 of Lecture Notes in Computer Science, pages

428–439. Springer Berlin Heidelberg.

[Grogan and Dahyot, 2017] Grogan, M. and Dahyot, R. (2017). Robust Registration of Gaussian Mixtures for

Colour Transfer. ArXiv e-prints.

[Grogan et al., 2017] Grogan, M., Dahyot, R., and Smolic, A. (2017). User interaction for image recolouring

using L2. In Proceedings of the 14th European Conference on Visual Media Production (CVMP 2017),

CVMP 2017, pages 6:1–6:10, New York, NY, USA. ACM.

[Lin and Hanrahan, 2013] Lin, S. and Hanrahan, P. (2013). Modeling how people extract color themes from

images. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’13,

pages 3101–3110, New York, NY, USA. ACM.

[O’Donovan et al., 2011] O’Donovan, P., Agarwala, A., and Hertzmann, A. (2011). Color compatibility from

large datasets. ACM Trans. Graph., 30(4):63:1–63:12.

[Papadakis et al., 2011] Papadakis, N., Provenzi, E., and Caselles, V. (2011). A variational model for histogram

transfer of color images. Image Processing, IEEE Transactions on, 20(6):1682–1695.

[Pitié et al., 2005] Pitié, F., Kokaram, A. C., and Dahyot, R. (2005). N-dimensional probability density func-

tion transfer and its application to color transfer. In Tenth IEEE International Conference on Computer

Vision (ICCV’05) Volume 1, volume 2, pages 1434–1439 Vol. 2.

[Reinhard et al., 2001] Reinhard, E., Adhikhmin, M., Gooch, B., and Shirley, P. (2001). Color transfer between

images. Computer Graphics and Applications, IEEE, 21(5):34–41.

[Shapira et al., 2009] Shapira, L., Shamir, A., and Cohen-Or, D. (2009). Image appearance exploration by

model-based navigation. Computer Graphics Forum, 28(2):629–638.

[Tai et al., 2005] Tai, Y.-W., Jia, J., and Tang, C.-K. (2005). Local color transfer via probabilistic segmentation

by expectation-maximization. In 2005 IEEE Computer Society Conference on Computer Vision and Pattern

Recognition (CVPR’05), volume 1, pages 747–754 vol. 1.

[Zhang et al., 2017] Zhang, Q., Xiao, C., Sun, H., and Tang, F. (2017). Palette-based image recoloring using

color decomposition optimization. IEEE Transactions on Image Processing, 26(4):1952–1964.


