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Visual Attention-Aware Omnidirectional Video
Streaming Using Optimal Tiles for Virtual Reality

Cagri Ozcinar∗, Julián Cabrera†, and Aljosa Smolic∗

Abstract—Owing to its interactive look around nature and
very large resolution requirement, providing immersive omni-
directional video (ODV) streaming experiences in virtual reality
(VR) applications demands cost-effective solutions to meet both
the content delivery network and device constraints. In this
paper, we introduce an adaptive omnidirectional video (ODV)
streaming pipeline that optimizes DASH representations of ODV
content considering their visual attention (VA) maps. The main
contribution of this paper is the use of VA maps: (i) to compute
a novel objective quality metric that captures the fact that
not all of the ODV is actually watched by users: the visual
attention spherical weighted (VASW)-based objective quality
measurement, (ii) to define optimal tile representations of the
ODV frames, namely tiling schemes, which are composed of
variable-sized and non-overlapping tiles, and (iii) to efficiently
distribute a given bitrate budget among the set of tiles within
a tiling scheme for an ODV. We evaluate the proposed system
performance with varying bandwidth conditions and the tracked
head orientations from user experiments. Results show that the
proposed system significantly outperforms the existing non-tiled
and tile-based streaming solutions.

Index Terms—omnidirectional video, visual attention, tiles,
adaptive streaming, virtual reality.

I. INTRODUCTION

Tremendous activity can be observed in the video industry
these days in terms of offering immersive virtual reality (VR)
video experiences using omnidirectional video (ODV), also
known as 360◦ video. The recent trial of live ODV streaming at
the 2018 World Cup tournament [1] by BBC is a decisive proof
of relevance. This emerging video representation is captured
typically by multiple cameras which cover 360◦ of a scene and
rendered through head-mounted displays (HMDs) which allow
viewers to look around a scene from a central point of view
in VR, resulting in a more immersive and interactive visual
experience than that available through traditional 2D video.

Delivery of ODV at a perceptually acceptable quality level,
however, is a challenging task due to limitations in processing
and delivery pipelines, as well as constraints imposed by
the available end-user devices. ODV is typically produced
and stored in a planar representation, e.g., an equirectangular
projection (ERP), in order for it to remain compatible with
existing video delivery pipelines, and then it is projected back
onto a spherical surface when rendered. However, existing
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Politécnica de Madrid, Madrid, Spain. Email: julian.cabrera@gti.ssr.upm.es

Manuscript received DD, MM, 2018; revised DD, MM, 2018.

HMDs have a viewable field of view (FOV) and use only
a fraction of the given content at a given time, namely
the viewport. Transmission of ultra-high resolution ERP, e.g.,
≥ 8K, is, therefore, needed to obtain a decent VR video quality
level. In this context, transmission of a current region-of-
interest [2]–[4] or viewport-dependent streaming solutions [5]–
[10] can be utilized to enhance the perceived VR video
quality. However, in video transmission scenarios with delay-
prone communication pipelines [11] and rapid head orientation
activities [12], such solutions are merely inefficient in terms
of complying with the motion-to-photon latency requirement;
thus penalizing the quality of experience (QoE).

Given its look-around viewing nature and very large resolu-
tion requirement, transmission of ODV demands cost-effective
compression and adaptive streaming solutions to meet network
constraints. MPEG-dynamic adaptive streaming over HTTP
(DASH) [13], for example, can be used to provide seamless
video streaming experiences through networks. In DASH, each
given video has a set of DASH representations which contain
its different bitrate levels. Each DASH representation, which
has its bitrate level, consists of multiple self-decodable time
segments, namely chunks, which can be requested individually
and decoded by DASH players. In this context, in order
to reduce both the bitrate consumption of the end-user and
the visual distortion of the viewport, as well as to improve
the bitstream decoding performance using parallel decoding
features, ODV frames in each chunk can also be divided
into self-decodable spatial regions [14], namely, tiles. To this
end, the spatial representation description (SRD) feature in
DASH [13], [15] is used to provide the necessary signaling to
transmit each tile of a given content and reconstruct the full
360◦ of the scene for VR.

Although tile-based encoding brings benefits to ODV
streaming pipeline, the selection of the tiling scheme impacts
its compression performance. The tile-based encoding tech-
nique introduces several opportunities for ODV content [3],
[4], [14]–[16]. For example, cost-effective video coding [6],
[17], [18], partial decoding [15], [19]–[21], parallel decod-
ing [14], [21], and utilizing visual attention (VA) maps, which
describe how the users consume a given video at a given
time [12], [22], in video streaming can be made possible using
tiles. However, the selection of the tiling scheme, which rep-
resents the spatial partitioning structure [21] containing a set
of non-overlapping tiles, impacts the compression efficiency.
More clearly, usage of larger resolution tiles (i.e., smaller
number of tiles) can increase the coding gain for some content
at some bitrates by exploiting a large number of redundant
pixels, but they provide less flexibility in terms of exploiting
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the redundant pixels outside of the viewport region [7]. In
contrast, using small tiles may decrease the coding efficiency
by exploiting fewer spatial redundancies. It is, therefore,
necessary to find an optimal tiling scheme based on viewport
trajectories (e.g., VA) for a given ODV; thus, a smart delivery
strategy can save network bandwidth and improve the overall
QoE performance for VR video applications.

This paper introduces an adaptive ODV streaming system
design which determines an optimal tiling scheme of a given
content for each chunk, and the required encoding bitrate level
for each tile of the optimal tiling scheme using a VA-based
probabilistic model. First, we conducted formal subjective
viewing sessions using an HMD to estimate this model by
collecting viewport trajectories of ODVs. This model is used to
allocate a given bitrate within the tiles. Second, we propose a
VA-driven spherical weighted objective quality metric, namely
VASW-PSNR, to determine the optimal tiling scheme for each
chunk of a DASH representation. Our work extends our short
conference paper [23] by providing a new formulation for the
developed VA-driven quality metric, using variable-sized tiles,
and a comprehensive performance assessment with a broad
range of 8K resolution ODVs with different complexities.
Our proposed design does not require any modification of the
existing DASH players and is entirely transparent to them.
As such, we expect that our work will provide helpful input
for the streaming industry in terms of considering variable-
sized tiles per chunk and non-uniform bitrate distribution
based on VA for transmitting the ODV content. To verify our
proposed solution, we recorded eight participants’ viewport
trajectories in disjointed viewing sessions using an HMD
and compared our proposed method with reference adaptive
streaming solutions, which are based on naive tiling and non-
tiling schemes. Experimental results show that the proposed
optimization framework for adaptive ODV streaming demon-
strates quality enhancements compared with the reference
streaming solutions.

The remainder of this paper is organized as follows. A brief
overview of the related work is detailed in Section II. Follow-
ing that, the proposed streaming system model is described in
Section III. Experimental results are provided in Section IV.
Finally, the conclusion of the paper is provided in Section V.

II. RELATED WORK

Several related studies are available for compression and
streaming for ODV on one side, objective quality assessment
techniques for ODV on the other side. In the following, we
outline only the ones that are most related to our work.

A. Studies related to compression

ODV compression algorithms typically work by considering
a tile-based representation of a given content that offers
several opportunities for VR applications. Cost-effective video
coding [17], [24], [25] and partial decoding [15], [20], for
example, were made possible using tiles. Ozcinar et al. [17]
estimated an optimal set of encoding parameters (e.g., set
of quantization and resolution pairs) for tile-based ODV
streaming. Results showed that the selection of an optimal set

of encoding parameters achieved significant bitrate savings,
as compared with the use of reference solutions. Similarly,
Xiao et al. [24] estimated optimal tiling schemes, wherein the
estimation problem was formulated as a trade off between the
costs of storing a set of tiles and the costs of serving sets
of tiles that cover possible views of the chunk. Differently
from our work, the usage of visual attention-aware bitrate
allocation, determination of a set of optimal tiles were not part
of their considerations to improve the QoE. An optimal spatio-
temporal smoothness approach was also developed in [26]
for tile-based streaming. With this system, the clients can
request the best set of tiles according to the location of the
viewport. The optimal bitrate for each tile is determined in
a way to minimize spatial and temporal quality variations.
However, the formulated optimization problem is based on
the traditional mean square error which does not take the
spherical distortion of the ODV representation into account.
By contrast, our proposed system relies on the server side
and our formulation considers the expected viewport quality
distortion by integrating the geometrical and compression
distortions.

Transmission of very high resolution ODV content not only
consumes excessive network bandwidth but also requires high
computational power at client locations. For this purpose,
regional down-sampling was studied [25] to increase the
compression gain and reduce the computational complexity
of the codec. A regional down-sampling algorithm for the
temporal domain was also proposed, where the intra- and inter-
frames were encoded in full resolution and a regionally down-
sampled format, respectively. A recent study [27] proposed
a new packing arrangement for the transmission of ODV
in order to provide higher-resolution video experiences. The
packing arrangement guaranteed that the content within the
viewer’s FOV originated from 6K resolution content, while
the remaining parts were covered with the content at a lower
resolution.

Distortion of spherical geometry can be taken into account
in the video encoding process to achieve ODV compression
gain. To this end, Liu et al. [28] proposed a rate-control mecha-
nism for the high efficient video coding (HEVC) standard [29]
based on the spherical PSNR (S-PSNR) metric [30], which
minimized the spherical distortion at a given target bitrate.
Experimental results showed compression gain compared with
the standard HEVC rate-control mechanism in terms of S-
PSNR at identical bitrates. Similarly, a new rate-distortion
optimization was introduced [31] that improves ODV coding
efficiency by considering the spherical distortion within the
rate-distortion optimization process of HEVC.

B. Studies related to streaming

Viewport-aware techniques in adaptive streaming systems
are ideal solutions for improving the quality of the VR video
experience. Early studies [3], [4], [16], [32] used a previous
progressive streaming technology that can be supported by
region-of-interest-coding solutions to enhance the perceived
ODV quality. Although these approaches were far from achiev-
ing high-quality performance, because of the limitations of
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the underlying technologies, each study represents pioneer-
ing work in this area. A more recent study [7] utilized
DASH-based streaming technology to transmit tiled ODVs.
A viewport-aware bitrate distribution was introduced wherein
an optimal bitrate level was selected for each fixed-sized
tile, based on a spherical distance criterion. Similarly, two
differently encoded versions of the same content were deliv-
ered to reduce the transmission rate of a given ODV using
DASH [6]. The tiles, which were overlapped with the current
viewport, were delivered in high resolution while the rest
of the tiles were transmitted in low resolution. Furthermore,
several versions of DASH representations were generated for
different viewport positions [8], where the opposite areas of
the defined viewport were set to uniform black to increase
the compression gain. Hosseini et al., [9] assigned a high-
quality level to the tiles within the current viewport, which
the user was most likely to use, while a low-quality level
was presented outside of a user’s immediate viewport tiles.
Similar to the previous work, Corbillon et al., [10] proposed
a viewport-adaptive video delivery system, wherein DASH
representations that differ by bitrate and scene region were
used. Furthermore, a recent practical study [2] examined
several DASH strategies and evaluated bitrate overhead and
quality requirements. However, none of those mentioned above
studies considered flexible-sized tiling strategy, per chunk
bitrate optimization, and VA, which are the major contributions
of this work. The importance of using VA [33] and benefits
of chunk-based bitrate optimization at the server side [34] are
also emphasized by professional streaming service providers.

Prefetching of ODV tiles is an efficient solution for saving
network bandwidth, but requiring very low transmission la-
tency for VR applications [35]–[38]. For instance, the total
expected distortion of the prefetched tiles was minimized
by using a developed probabilistic model [35]. Additionally,
Petrangeli et al. developed an algorithm [36] to predict the
future viewport position and to minimize quality transitions
during viewport changes. End-to-end ODV streaming latency
was also minimized by using a server push mechanism in
DASH. Furthermore, fetching only the pixels visible to the
current viewport was investigated in preliminary studies [37],
[38]. Although the proposed strategies were ideal for saving
of network bandwidth, extremely low end-to-end latency was
required [2], [32], [39] to predict accurate future viewport
positions for each client and content. Such low latency re-
quirement is not the always the case in existing networks and
VR devices.

MPEG-I group addressed the needs of the storage and
transmission of ODV by developing the media representation
for ODV, called omnidirectional media format (OMAF) [40].
This format mainly enables the consumption of ODV by
considering coding, encapsulation, and presentation for adap-
tive streaming. At this stage, OMAF specified two projection
formats, namely ERP and cubemap projection. The system
implementation of the OMAF targets the distribution of video
and audio signals from the capturing side to rendering and
presentation on the client side [41].

Further studies investigated additional aspects of VR video
streaming, such as an efficient ODV content preparation

strategy [42] and a cost-optimal downloading method [43]
for ODV streaming. In order to consume less bandwidth
while maintaining the user’s experience, Dambra et al. [42]
improved the streaming of ODV by editing the film in such
a way as to limit the client’s motion. The content editing
strategy and streaming module were integrated within the
MPEG DASH-SRD player. Rossi et al. proposed a navigation-
aware transmission strategy in [43]. Although we share the
similar problem formulation in the sense of modeling the
distortion of ODV, both algorithms have different perspectives.
The optimization logic in [43] is at the client side, providing
user-centric optimization. In their work, the client has to solve
an optimization problem to find out the optimal bitrate for
each tile. It is more a theoretical work which contains several
approximations like infinite playback buffers or exact channel
estimation. Differently, our bitrate optimization is at the server
side of the streaming pipeline, providing a global solution
for all the clients in the network and able to work in a real
scenario.

C. Studies related to quality assessment

Most quality assessments take its spherical characteristics
into account to evaluate the quality of a given VR content.
Yu et al. considered the problem of evaluating the coding effi-
ciency of omnidirectional content and subsequently developed
the S-PSNR metric [30]. The planar projected content was
mapped onto the spherical representation in order to compute
the observed distortion of a given VR content. However,
pixel mapping from the planar to the spherical representa-
tion requires pixel interpolation to obtain values in specific
positions. Craster parabolic projection (CPP-PSNR) was also
introduced [44], which computed the distortion between the
reference and impaired content mapped by the projection.
More recently, Sun et al. introduced weighted spherical - mean
square error (WS-MSE) and WS-PSNR [45]. As the sphere-to-
plane projection techniques distort the spherical representation,
the distortion between a given reference and impaired content
is calculated using the weights according to the pixel position
on the spherical surface. Each weight is computed from the
projected 2D plane (e.g., ERP) by considering the impact
of stretching distortion for each pixel. However, none of the
described metrics elaborately measured the perceived quality
of a given ODV, nor considered the look-around nature of the
ODV viewing experience. For this, we extended the concept
of the WS-based objective quality metric, and introduced a
new VA-weighted objective quality metric for ODV.

Considering that users can only see one part of the scene at
a time in HMDs, visual attention and perception have become
fundamental research topics for measuring the quality of omni-
directional content [12], [22], [46]–[49]. The perceived quality
impact of a given omnidirectional image content in peripheral
vision, for instance, was studied in one investigation [50], in
which various compression levels and spatial resolutions were
evaluated. The quality at the central region of the viewport was
fixed, and the quality of near and far peripheral regions were
degraded until the subject noticed the distortion. However, this
work only considered the region inside of the viewport by
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changing the quality levels. More recently, Xu et al., [47]
addressed quality assessment required in ODV compression
and ultimately developed two objective quality assessment
methods. One of the proposed methods weighted the distortion
of pixels with regard to distances from the center. The other
proposed method predicted viewing directions. However, dis-
tortion was measured on planar projected frames, and the non-
uniform sampling density on the sphere was not considered
in the study. Besides, the computational saliency prediction
algorithm used, which was proposed for traditional 2D video,
might not provide an accurate prediction performance for
ODV [12].

III. PROPOSED SYSTEM MODEL

We consider an adaptive streaming pipeline to deliver very
high-resolution of ODVs to VR clients over the Internet, as
illustrated in Fig. 1. The proposed system enables each client
to navigate through a delivered ODV and creates an immersive
VR video experience using a given HMD. Our proposed
design consists of three nodes: source, media platform, and
delivery. The source node is responsible for capturing and
post-processing (e.g., sphere-to-plane mapping). The media
platform estimates for each DASH representation, an optimal
pair of tiling scheme and a set of tiling bitrates for each c
chunk according to the target bitrate of the DASH represen-
tation and the VA map.

To achieve this objective, the media platform handles the
tiling, estimation of VA, bitrate allocation and encoding,
optimization of the tiling scheme, packing (i.e., encapsulation)
and transferring the prepared video data to the content delivery
network (CDN). CDN is a cloud-based video streaming system
which delivers ODVs to the edge servers in such a way as to
connect effectively with the end users. Finally, in the delivery
node, each end user requests and receives an appropriate
DASH representation containing a set of tiles.

The source node of the proposed system captures each ODV
v and maps it onto a 2D planar plane (i.e., rectilinear) using
the projection techniques (e.g., ERP) to keep it compatible
with the existing video pipelines. While the proposed system
is compatible with other projection techniques (e.g., cubemap),
in the following we consider the ERP as the input ODV format,
which is the most widely deployed ODV representation [51].
ERP contains full panoramic 360◦ horizontal and 180◦ vertical
views of the captured scene.

The media platform divides a given content into a predefined
set of tiles, T , of different sizes. Then, each tile, t, is encoded
at different predefined bitrates {rti} and segmented into chunks
of a predefined duration. From T , several different tiling
schemes can be built for each chunk. A tiling scheme for
chunk k, sk, consists of a subset of non-overlapping tiles that
reconstruct the full 360◦ scene.

The target bitrate r of a DASH representation is then
allocated within each tile t ∈ sk based on the proposed
VA-based bitrate distribution method, and considering the set
of predefined encoding bitrates available for each tile {rti}.
Here, the objective is to reinforce the quality of those parts
of the ODV which are more likely to be seen, maximizing

the expected quality of the actual content watched by the
user. For this objective, a VA map is computed using the
recorded viewport trajectories for each chunk, and represents
the probability that a set of users watches a tile within the
ERP representation.

An optimal tiling scheme s∗k is then determined for each
chunk according to the proposed VASW-based objective qual-
ity metric, which considers the VA map and spherical repre-
sentation of a given content. The selection of the optimal tiling
scheme is carried out on a chunk basis, and the selected tiles
are packed and stored on servers building up each optimized
DASH representation. Hence, an optimal set of tiles, which
is composed of non-overlaping and variable-sized (or fixed-
sized) tiles which have optimal bitrate levels for a given
content, is delivered to the clients when they make their HTTP
requests for any DASH representation.

A. Optimization of tiling scheme

Let Sk be the set of all possible tiling schemes that can be
built upon the set of tiles T on chunk k stored in the server.

To determine the optimal tiling scheme s∗k ∈ Sk for allocat-
ing the target bitrate r within a set of tiles, an exhaustive search
is applied on Sk. This exhaustive search aims to find the tiling
scheme that incurs in the lowest distortion for the considered
chunk according to the VASW-based objective quality metric.
For that purpose, the exhaustive search algorithm performs the
following steps:

1) For each tiling scheme sik ∈ Sk:
a) Perform the bitrate allocation among the tiles that

conform sik according to the proposed tile bitrate
allocation algorithm based on VA map data.

b) Compute the distortion of the chunk, Dchunk(sik),
according to the proposed VASW-based objective
quality metric.

2) Select the tiling scheme that incurs in the minimum
distortion, s∗k.

Hence, once the bitrate allocation algorithm has determined
the target bitrate each tile in chunk sik, its distortion can be
calculated as in Eq. (1):

Dchunk(sik) =

F∑
f=1

DVp
(f), (1)

where F is the number of frames in chunk sik and DVp
(f)

represents the VASW-based quality measurement of frame f
within the chunk.

Finally, s∗k is calculated as in Eq. (2):

s∗k = arg min
sik∈Sk

Dchunk(sik) (2)

To achieve our objective in Eq. (2), the proposed optimiza-
tion formulation requires inputs from main components: i)
estimation of VA, ii) VASW-based objective quality measure-
ment, and iii) tiling and bitrate allocation. These algorithms
are described in the following sections:
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Fig. 1: Schematic diagram of the proposed adaptive ODV streaming pipeline for VR.
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Fig. 2: Estimation of viewport-based visual attention (VA) map
using the collected viewport trajectories: a) viewport mask for
the f -th frame of the n-the client, b) VA probability for the
f -th frame.

B. Estimation of visual attention

To estimate VA, we collected a set of viewport trajectories
from participants following the previous work done by [12], in
which a limited number of tracked viewport trajectories were
collected using only selected ODVs with limited number of
participants. Our extended dataset contains viewport trajecto-
ries from 25 participants watching 17 ODVs. This dataset is
available at our project page1.

Given a set of tracked viewport trajectories, a viewport-
based VA map is estimated for each ODV frame. In this work,
each VA map serves as a bi-dimensional histogram for the
pixel locations of its corresponding ODV frame, and its values
represent the number of times that clients have paid attention
to the analogous pixels in the frame. For a given pixel position,
the higher the VA map value is, the more times the pixel at
that position in the frame has been watched. Fig. 2 illustrates
the estimation of viewport-based VA using a set of viewport
trajectories from participants.

The computations for the VA maps require the estimation of
the users’ viewport position. By using each recorded viewport
trajectory (azimuth, elevation, and roll), which is available
for each frame, the viewport’s corresponding pixel area is
estimated on a planar surface. In order to accomplish this task,
a mask is used wherein the pixels within the viewport are
assigned the value one, and the pixels outside of the viewport
are assigned the value zero.

1https://v-sense.scss.tcd.ie/research/va-aware-odv-streaming/
https://github.com/cozcinar/optimalTiles

Mapping

180° 

360°

user
viewport

Vp

X 

Y 

Z 

Fig. 3: Illustration of a mapping from a planar ERP to the
spherical surface [45].

The VA map for a given f -th frame, V f
A , averages the

contributions of the L users considered for that frame as
defined in Eq. (3):

V f
A =

L∑
n=1

Af,n
p , (3)

where Af,n
p is the viewport mask for the f -th frame of the

n-th client which is obtained at (i, j) by using Eq. (4):

Af,n
p (i, j) =

{
1 (i, j) ∈ ZVp

0 (i, j) /∈ ZVp

(4)

where ZVp
represents the area of the viewport on the planar

surface.
Finally, the probability of VA for each pixel location,

af (i, j), is estimated as (Eq. (5)):

af (i, j) =
V f
A (i, j)

L
=

∑L
n=1A

f,n
p (i, j)

L
. (5)

C. VA-driven spherical weighted quality metric

Its spherical representation and interactive exploration
(look-around) nature are two key elements for the quality
measurement of the ODV content. The observation space of
the ODV can be modelled as a sphere surrounding the end
users, and each user at any given instant, is able to observe a
part of the sphere, corresponding to the actual user’s viewport.

Geometrical distortion is involved because of its non-linear
geometrical transformation from the spherical to the planar
surface [45]. As the spherical ODV content is first projected
onto a 2D planar surface, involving a non-linear geometrical

https://v-sense.scss.tcd.ie/research/va-aware-odv-streaming/
https://github.com/cozcinar/optimalTiles
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transformation between the pixels of both representations [45]
results in geometrical distortion. As an example of this ge-
ometrical distortion, the content on the poles of the sphere
is severely stretched to be able to fill up the upper and
bottom areas of the ERP representation. Fig. 3 illustrates the
non-linear geometrical transformation from ERP to spherical
surface with an example of a given texture frame and its VA
map.

In this context, when computing a traditional pixel-based
distortion measurement, such as MSE, the result may differ
significantly in the projected plane (e.g., ERP) compared
to that obtained in the sphere domain. To account for this
effect, we take as reference metric the WS-MSE formulation
proposed by Sun et al. [45], where correction weights are
introduced for each pixel of a given planar projection, defined
as w(i, j) for ERP. These weights are in range from zero to
one, so ERP pixels in the stretched areas get a lower value
than pixels in the equatorial zone. For a given ERP frame,
each pixel weight is estimated using the stretching ratio as in
Eq. (6):

w(i, j) = cos
(j + 0.5−N/2)π

N
∀i ∈M, ∀j ∈ N, (6)

where M ×N is the resolution of a given ODV frame. WS-
MSE is then formulated as shown in Eq. (7) [45]:

WS-MSE =

∑M
i=1

∑N
j=1 e(i, j)

2w(i, j)∑M
i=1

∑N
j=1 w(i, j)

, (7)

where e(i, j) is the pixel error of an ERP frame of M × N
pixels, and w(i, j) is the weight associated to pixel (i, j) for
mapping the ERP pixel to the sphere.

Additionally, in this study, we argue that any quality metric
for ODV should also consider the fact that the user cannot
observe all the content but only part of it when navigating
through it. At any given time, the user can just observe the area
corresponding to the location of the viewport on the sphere,
although the viewport position changes along time according
to the user’s head movement. Thus, each viewing of the ODV
content consists of a subset of the total pixels that define
the ODV, and that subset of pixels is the one that should be
considered when measuring the user’s quality (i.e., fidelity) on
a particular viewing of the ODV. In this sense, we propose to
use the VA probability model to capture this effect and extend
the WS-MSE metric.

Let DVp
(f, n) be the distortion of the actual part of frame

f that has been observed by the user n of the set of users.
Considering the WS-MSE as the distortion metric, and taking
into account the viewport mask for that frame Af,n

p , DVp(f, n)
can be computed as in Eq. (8):

DVp (f, n) =

∑M
i=1

∑N
j=1 e(i, j)

2w(i, j)Af,n
p (i, j)∑M

i=1

∑N
j=1 w(i, j)Af,n

p (i, j)
, (8)

In Eq. (8), the numerator computes the projection-
compensated squared error of the pixels that belong to the
viewport area, while the denominator represents the area of
the viewport in the sphere domain, SVp . Although in the
ERP planar representation, the actual area of the viewport

depends on its location due to the geometrical distortion of
the projection, in the sphere domain, the area of each viewport
does not change with the viewport location. Thereby, Eq. (8)
can be re-written as in Eq. (9):

DVp (f, n) =

∑M
i=1

∑N
j=1 e(i, j)

2w(i, j)Af,n
p (i, j)

SVp

, (9)

By using Eq. (5), the average DVp
(f, n) value over the total

number of users (L), DVp(f), can be calculated as in Eq. (10):

DVp (f) =
1

L

L∑
n=1

DVp (f, n)

=
1

LSVp

L∑
n=1

 M∑
i=1

N∑
j=1

e(i, j)2w(i, j)Af,n
p (i, j)

 .

(10)

From Eqs. (5) and (10), we can express DVp
(f) using the

proposed visual attention probability map in Eq. (11):

DVp (f) =
1

SVp

 M∑
i=1

N∑
j=1

e(i, j)2w(i, j)
1

L

L∑
n=1

Af,n
p (i, j)


=

∑M
i=1

∑N
j=1 e(i, j)

2w(i, j)af (i, j)

SVp

(11)

We refer to DVp(f) as the the visual attention based spher-
ical weighted distortion metric, namely, VASW-MSE which is
used in Eq. (2) to determine optimal tiling schemes. Finally,
VASW-PSNR is defined from VASW-MSE as:

QVp
(f) = 10log

(
χ2

DVp

(f)

)
, (12)

where χ is the maximum possible intensity level of a given
ODV frame. For example, this value is 255 for eight bit-depth
ODV video content, i.e., 2bit-depth − 1. The proposed quality
measurement represents the ratio between the maximum pos-
sible power of a signal and the noise power based on weighted
error with VA in the spherical observation space.

D. Tiling and bitrate allocation

The proposed system works by dividing a given ODV into
tiles following a generic tiling architecture that consists of two
large tiles for the poles of width equal to that of the ERP, and
a set of tiles with different sizes for the equatorial region [7].
Fig. 4 illustrates the used tiling architecture and its possible
tile sizes considered in this study.

The used tiling scheme is motivated firstly, by the lower
importance due to the stretching that suffers the ERP in the
poles together with the usual low-motion characteristics of the
scene in them. Secondly, for the dominant viewing adjacency
of the equatorial region, we propose the use of a set of tiles to
achieve higher coding gain. This set of tiles consists of tiles
of different sizes and overlap can occur among some of them.

To generate various number of tile sizes to be used in
optimization, each ODV frame is divided into g number of
tiles. Two tiles are used for the poles, while for the equatorial
area several tiles of different sizes are used. We consider first a
tile covering the whole equatorial area, and then we recursively
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Polar tile

Polar tile

Equatorial tile

Fig. 4: The used tiling structure with its different schemes.

generate new tiles dividing by half the width and the height
of the previous tiles until a predefined number of divisions
is reached in each dimension: gver for the height and ghor
for the width. The higher these predefined constants (ghor and
gver) are, the higher the number of schemes used in the tiling
scheme optimization is. In other words, it is a given trade-off
between granularity of the tiling schemes and computational
complexity of the search engine of optimization in Eq. (2).

For a given chunk k and for the given target bitrate r ∈ R,
the objectives are to select the most suitable subset of tiles,
called as the optimal tiling scheme s∗k, among the available
ones that cover without overlapping the ODV scene, and to
define the bitrate allocation scheme, taking into consideration
the characteristics of the VA.

In order for a tiling scheme sk ∈ Sk to be considered
for optimization, our proposed VA-based bitrate allocation
algorithm first distributes the given target bitrate r ∈ R within
each tile t ∈ sk chunk by utilizing a chunk-based VA map.
Here, the tiling scheme sk can be defined as a selection of a
subset of tiles in a set of available tiles which cover without
overlapping the whole 360◦ area.

To allocate a given target bitrate r within each tile t ∈ s,
we first estimate a weight, ϕt, for each t-th tile as in Eq. (13):

ϕt =

∑Mt

i=xt

∑Nt

j=yt
w(i, j)P k

a (i, j)∑Mt

i=xt

∑Nt

j=yt
w(i, j)

i ∈M, j ∈ N, (13)

where Mt and Nt are the width and height of the resolu-
tion size of the t-th tile, xt and yt are the horizontal and
vertical pixel positions of the top-left corner of the t-th tile,
respectively. w(i, j) represents the weight associated to pixel
(i, j) for mapping the projected pixel to the sphere, as defined
in Eq. (6). P k

a (i, j) is the pixel VA probability at the (i, j)
pixel location for the c-th chunk, which is estimated as in
Eq. (14):

P c
a(i, j) =

F∑
f=1

af (i, j), (14)

where F is the total number of frames in the given c-th chunk.
Finally, to accommodate a given DASH representation that

has target bitrate r ∈ R, a bitrate for each tile, rt, from the
set of available encodings, {rti}, can be selected under the
condition that the total bitrate is not higher than the given
target bitrate r, as defined in Eq. (15):

rt ≈ ϕ̃tr ∀t ∈ sk, where ϕ̃t =
ϕt∑T
t=1 ϕt

,

subject to
T∑

t=1

rt ≤ r,

with Rs
min ≤ rt ≤ Rs

max,

(15)

where T is the total number of tiles for a given sk ∈ Sk, and
Rs

min and Rs
max are constraints for minimum and maximum

bitrate allocation for each tile of s-th tiling scheme.
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Fig. 5: Video statistics: average SI and TI of ODV sequences
used in the experiment.
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Fig. 6: The used tiling architectures with example height
(gver) and width (ghor) divisions to generate number of tiling
schemes with variable-sized tiles.

IV. RESULTS

A. Setup

1) Source video: We used the following six uncompressed
ODVs from the joint video exploration team (JVET) of ITU-T
VCEG and ISO/IEC MPEG: V = {Basketball, left Dancing,
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Harbor, KiteFlite, Gaslamp, Driving, JamSession} [52]–[54].
We selected only test data with 8K to provide high quality
for a given viewport. Each ODV is in ERP and YUV420p
format, 30 fps, and of 10 sec. length. Also, a set of ODV was
chosen to represent a broad range of content complexities.
To choose variety of content types, we calculate spatial and
temporal indices, SI and TI, of each ODV based on the ITU
recommendation P.910 [55]. SI indicates the amount of spatial
details of each video frame, where a higher value represents
a more spatially complex image. The estimated TI value
presents the amount of motion difference between pixel values
at successive frames. More motion in adjacent frames result
in higher value of TI. Fig. 5 shows the average value of SI
and TI for each ODV sequence used in the experiment.

2) Collection of viewport trajectories: First, we utilized our
developed test-bed [12] to collect the viewport trajectories for
V from the L participants. The test-bed was implemented using
two APIs, namely, three.js [56] and WebVR [57]. The
former enabled us to create and display GPU-accelerated 3D
graphics in a web browser. The latter enabled the creation of
fully immersive VR experiences in a web browser, allowing
us to display each ODV without the use of any other specific
software. The participants viewed each ODV on the Oculus
Rift consumer version as HMD and Firefox Nightly as a web
browser.

Subjective tests were performed as task-free viewing ses-
sions, i.e., each participant was asked to look naturally at each
presented 360◦ video while seated in a freely rotatable chair.
Each session, which lasted approximately 15 min., was split
into a training and a test session. During the training session,
the Trolley video sequence [53] was played to ensure a sense
of familiarity with the viewing setup. Then, during the test
session, each ODV randomly displayed while the individual
viewport trajectories were recorded for each participant. We
have only considered first views of the content by the partici-
pants. Between two successive ODVs, we inserted a five sec.
short break period with a gray screen. Also, before playing
each ODV, we reset the HMD sensor to return the initial
position.

Subjective experiments were conducted with 25 participants
(18 males and seven females). The participants were aged
between 22 to 46 with an average of 28.2 years. Five of the
participants were researchers on the VR project, and the others
were naı̈ve viewers; 60% of the participants had a medium
familiarity with visual attention studies; 15% and 25% of the
participants had no and high familiarity with visual atten-
tion studies respectively. Furthermore, eight participants wore
glasses, and all of the participants were screened and reported
normal or corrected-to-normal visual acuity. Participants were
split into two groups for, (i) modelling of visual attention data
and (ii) validation of the proposed approach, consisting of 17
and eight participants, respectively.

3) Tiling: Each given ODV was split into tiles based on the
described tiling structure in Section III-D; two fixed-sized tiles
at the poles and the varying number of tiles at the equatorial
region. Due to the fact that the most professional HMDs
have an approximate 90◦ of field-of-view, and most ODV
contents contain the most salient objects in the region of the

90◦ longitude span of the equatorial segment, we consider the
equatorial region as a 90◦ longitude segment, which is H/2.
Hence, we assigned the remaining 2× 45◦ longitude segment
for the polar regions, meaning H/4 for each pole. The equator
was further split into horizontal and vertical divisions. For this,
we used {1, 2} for the height division, ghor, and {1, 2, 4, 8, 16}
for the width division, gver, to generate number of equatorial
tiles. In total, ten fixed-sized tiling schemes, ghor · gver, were
generated, and by combining non-overlapping tiles, numerous
variable-sized tiling schemes were further formed to be used
as S in our optimization problem. Fig. 6 shows the used tiling
architecture to generate a number of tiles.

4) Encoding: We used the HEVC standard [58] to encode
each tile of a given ODV. For this, we used the libx265 in the
FFmpeg software (ver. N-85291) [59] to encode each tile. We
considered the video on demand TN2224 recommendations
for Apple devices [60] and encoded each tile using two-
pass with 200 percent constrained variable bitrate configu-
rations to ensure smooth perceptual video quality frame by
frame for a wide range of devices. We also defined buffer
size during encoding which limit the output bitrate to two
times of maximum bitrate to handle large bitrate spikes. Our
proposed method in this paper is flexible; it could be also
used with different encoding settings, e.g., unconstrained or
constrained encoding settings. This software was chosen over
the HEVC test model [61] reference software because of its
faster encoding performance and easy control to choose the
target bitrates. We selected 22 different target bitrate levels in
between 1 and 50 Mbps to encode the ODV content, and the
target bitrate for each tile is then distributed proportionally to
its tile size. Hence, Rs

min = 1
ghor·gver+2 Mbps and Rs

max =
50

ghor·gver+2 Mbps for the s-th tiling scheme. Each bitstream
was divided into 2 sec. chunks to perform adaptive streaming.
In that end, it is also important to mention that our proposed
method is video codec agnostic; it can be easily utilized with
different video codecs, e.g., H.264/advanced video coding,
VP9, and AV1.

5) Benchmarks: We examined our proposed method with
different reference streaming solutions which use non-tiling
and fixed-sized tiling schemes (tiling schemes where all its
equatorial tiles are of the same size), namely 1-tile (non-
tiling) and fixed-sized ghor-gver. For the fixed-sized tiling
schemes, the total encoding bitrate level for each tile is equally
distributed by dividing the target bitrate level (r) to a given
number of tiles (g), i.e., bt = r

ghor·gver+2 . For the 1-tile (non-
tilling) method, each ODV is uniformly encoded according to
a given target bitrate level. These two reference solutions stay
with their fixed-sized tiling schemes through the streaming
session. Such tiling strategies are regularly used for adaptive
ODV streaming algorithms in academia and industry [2], [9].

We evaluated the proposed method by utilizing four dif-
ferent sets of tiling schemes, {S1,S2,S3,S4}. Each solution
was based on the formulated optimization in Section III-A that
can offer per chunk bitrate allocation and tiling scheme adap-
tation. The sets of S1 and S2 contain only fixed-sized tilling
schemes, and the sets of S3 and S4 contain both variable-
sized (tiling schemes where the equatorial tiles can be of
different size) and fixed-sized tiling schemes (S3 ⊃ {S1,S2}
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Fig. 7: red
Performance comparison using the rate-distortion curves computed with the average VASW-PSNR metric for the best-fixed

sized scheme, non-tiling scheme, and proposed selection scheme using different sets.

Method Sequence

Basketball left Dancing Harbor KiteFlite Gaslamp Driving JamSession

fixed-sized 1-1 (2.28, 2.34, 2.52, 2.54) (1.54, 1.61, 1.94, 2.01) (1.5, 1.5, 1.62, 1.81) (2.35, 2.46, 2.6, 2.69) (1.5, 1.53, 1.66, 1.72) (2.09, 2.1, 2.27, 2.37) (4.73, 4.73, 4.95, 5.04)
fixed-sized 1-2 (2.21, 2.26, 2.44, 2.47) (0.98, 1.04, 1.37, 1.45) (0.91, 0.92, 1.03, 1.22) (1.65, 1.76, 1.9, 1.99) (1.03, 1.06, 1.19, 1.25) (1.33, 1.33, 1.51, 1.61) (1.08, 1.08, 1.29, 1.38)
fixed-sized 1-4 (1.5, 1.55, 1.73, 1.76) (0.77, 0.83, 1.16, 1.24) (0.38, 0.38, 0.49, 0.69) (0.82, 0.93, 1.07, 1.16) (0.45, 0.48, 0.61, 0.67) (0.56, 0.56, 0.74, 0.84) (0.41, 0.41, 0.62, 0.71)
fixed-sized 1-8 (2.11, 2.16, 2.34, 2.37) (1.41, 1.47, 1.81, 1.88) (0.78, 0.78, 0.9, 1.09) (1.39, 1.5, 1.64, 1.73) (0.78, 0.81, 0.94, 1.01) (1.06, 1.07, 1.25, 1.35) (1.04, 1.04, 1.26, 1.35)
fixed-sized 1-16 (2.34, 2.4, 2.58, 2.6) (1.59, 1.66, 1.99, 2.06) (1.01, 1.01, 1.13, 1.32) (1.72, 1.83, 1.97, 2.06) (0.84, 0.87, 1.0, 1.06) (1.4, 1.41, 1.59, 1.68) (1.48, 1.48, 1.7, 1.79)
fixed-sized 2-1 (1.92, 1.98, 2.16, 2.18) (1.32, 1.38, 1.71, 1.78) (1.56, 1.57, 1.68, 1.87) (2.09, 2.2, 2.34, 2.43) (1.37, 1.39, 1.52, 1.59) (1.96, 1.96, 2.14, 2.24) (3.32, 3.32, 3.53, 3.62)
fixed-sized 2-2 (1.26, 1.31, 1.49, 1.52) (0.14, 0.2, 0.53, 0.6) (0.48, 0.48, 0.6, 0.79) (0.81, 0.92, 1.06, 1.15) (0.28, 0.31, 0.44, 0.5) (0.56, 0.56, 0.74, 0.84) (0.47, 0.47, 0.69, 0.77)
fixed-sized 2-4 (1.65, 1.7, 1.88, 1.91) (0.97, 1.04, 1.37, 1.44) (0.8, 0.8, 0.92, 1.11) (1.27, 1.39, 1.52, 1.61) (0.8, 0.83, 0.96, 1.02) (0.88, 0.89, 1.06, 1.16) (1.18, 1.18, 1.4, 1.49)
fixed-sized 2-8 (1.92, 1.97, 2.15, 2.18) (1.39, 1.46, 1.79, 1.86) (0.93, 0.93, 1.05, 1.24) (1.5, 1.62, 1.75, 1.84) (0.78, 0.81, 0.94, 1.0) (1.08, 1.09, 1.27, 1.37) (1.43, 1.43, 1.65, 1.74)
fixed-sized 2-16 (1.82, 1.88, 2.06, 2.08) (1.32, 1.38, 1.71, 1.78) (1.02, 1.03, 1.14, 1.33) (1.5, 1.61, 1.75, 1.84) (0.63, 0.65, 0.78, 0.85) (1.19, 1.19, 1.37, 1.47) (1.69, 1.69, 1.91, 2.0)

1-tile (non-tiling) (1.64, 1.69, 1.87, 1.9) (0.3, 0.36, 0.69, 0.77) (0.65, 0.66, 0.77, 0.96) (1.19, 1.31, 1.44, 1.53) (0.77, 0.8, 0.93, 0.99) (0.84, 0.84, 1.02, 1.12) (2.68, 2.68, 2.9, 2.98)

TABLE I: BD quality (in terms of VASW-PSNR (dB)) saving of the proposed method using a set of schemes (S1, S2, S3, S4).

and S4 ⊃ {S1,S2}). Each s ∈ {S3 or S4} was formed by
gathering the non-overlapping tiles of the existing fixed-sized
ghor-gver tiles that can create the complete ODV. The used
four different set of tiling schemes thorough evaluation of the
proposed method were summarized as follows:
• proposed method using S1: Each tiling scheme was gener-

ated using the proposed tiling architecture with ghor = 1
and gver = 16. The equatorial region had a set of number
of equal-sized tiles. In total, S1 contains five different
tiling schemes.

• proposed method using S2: Each tiling scheme was gener-
ated using the proposed tiling architecture with ghor = 2
and gver = 16. The equatorial region contains a set of
number of equal-sized tiles. Hence, in total, S2 contains
ten different tiling schemes.

• proposed method using S3: Each tiling scheme was
generated using the proposed tiling architecture with
gver = 16. Because of high computational complexity,
we started with the tiling architecture which has two
identical large tiles for the equator of width equal to that
of the ERP (see Fig. 4 (b)) and constrained the new tile
searching by dividing with only width dimension gver. In
this context, we generated 1513 different tilling schemes,
which have non-overlapping and variable-sized tile. To
have a broad range of tiling schemes, we also included
the fixed-sized tiling schemes (i.e., S2) to this scheme
set; thereby, S3 contains 1523 different tiling schemes.

• proposed method using S4: Each tiling scheme was gener-

ated using the proposed tiling architecture with ghor = 2
and gver = 8. In doing so, 5528 different tilling schemes,
which contain variable-sized tiles, were generated. To
have a broad range of tiling schemes, the fixed-sized tiling
schemes (i.e., S2) were also added to this scheme set;
thereby, S4 contains 5538 different tiling schemes.

Experimental results were compared to each other using
the Bjøntegaard Delta (BD) method [62], which describes
the distance between two RD curves. In this manner, PSNR
difference, namely ∆P, in dB averaged over the whole range
of bitrates was identified. In addition, the observed viewport
quality was measured using a set of viewport trajectories. For
this purpose, we introduced the viewport-based WS-PSNR
metric which considers the spherical distortion of a given
ODV. Viewport-based WS-PSNR is defined for the q-th time-
stamp of n-th participant as follows:

Viewport-based WS-PSNR = 10log

(
χ2

IqVp

)
, (16)

where Iq,nVp
represents the MSE of a given viewport as

Iq,nVp
(i, j) =

∑M
i=1

∑N
j=1 e(i, j)

2w(i, j)Aq,n
p (i, j)∑M

i=1

∑N
j=1 w(i, j)Aq,n

p (i, j)
, (17)

where Aq,n
p is the viewport mask for the q-th time-stamp of

the n-th client, as defined in Eq. (4).
In addition, we evaluated the quality of each chunk with

different bandwidth using the VMAF [63] quality index,
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Method Sequence

Basketball left Dancing Harbor KiteFlite Gaslamp Driving JamSession

fixed-sized 1-1 (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0)
fixed-sized 1-2 (0.0, 5.08) (0.0, 0.0) (5.66, 0.0) (7.41, 23.26) (0.0, 7.89) (6.52, 5.88) (9.76, 13.64)
fixed-sized 1-4 (0.0, 0.0) (12.0, 34.09) (0.0, 31.82) (11.11, 20.93) (13.46, 52.63) (0.0, 13.73) (2.44, 15.91)
fixed-sized 1-8 (16.13, 20.34) (40.0, 9.09) (3.77, 0.0) (0.0, 9.3) (0.0, 10.53) (28.26, 23.53) (29.27, 6.82)
fixed-sized 1-16 (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0)
fixed-sized 2-1 (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0)
fixed-sized 2-2 (22.58, 11.86) (12.0, 15.91) (26.42, 18.18) (14.81, 0.0) (21.15, 0.0) (19.57, 9.8) (29.27, 18.18)
fixed-sized 2-4 (11.29, 11.86) (16.0, 13.64) (28.3, 22.73) (3.7, 0.0) (26.92, 13.16) (28.26, 7.84) (12.2, 4.55)
fixed-sized 2-8 (33.87, 50.85) (12.0, 27.27) (16.98, 27.27) (48.15, 46.51) (23.08, 15.79) (17.39, 39.22) (12.2, 40.91)
fixed-sized 2-16 (16.13, 0.0) (8.0, 0.0) (18.87, 0.0) (14.81, 0.0) (15.38, 0.0) (0.0, 0.0) (4.88, 0.0)

TABLE II: Selected optimal tiles from the fixed-sized tiling schemes (in terms of %) for the proposed method using (S3, S4).

which is widely accepted to assess visual quality of video
in academia and industry. This metric accounts the temporal
characteristics of video and provides perceptually accurate
results for traditional 2D video and ODV [64].

For this purpose, we calculated VMAF for viewports within
a FOV, called viewport-based VMAF, measured based on
2D rectilinear viewport pictures generated from reconstructed
ODVs. The viewport rendered from the reconstructed ODV
is compared with the viewport rendered from uncompressed
ODV.

B. Experimental Results

We present the justification of the selected number of
participant for generating VA maps, the measured compression
gain using RD curves along with the Bjøntegaard metric [62],
and the observed viewport quality using a set of viewport
trajectories.

1) Impact of the used number of participants: To study
the impact of the number of participants, we selected three
different contents with different content complexities, and
carefully evaluated our selected participants by conducting two
separate experiments. Each experiment is based on Pearson’s
correlation coefficient (CC) [65], which is a statistical method
used for measuring how correlated two variables are. In this
metric, the CC range is between -1 and 1. When the correlation
value is close to -1 or 1, there is almost a perfect linear
relationship between the two variables.

In the first experiment, we measured the CC between the
estimated visual attention map in our paper and the generation
of visual attention maps using a variable number of partic-
ipants. In this experiment, we randomly picked a different
number of participants from our dataset. The experimental
result shows that the CC score is saturated after the number of
fifteen participants. We also observe that using 17 participants
is sufficiently enough to generate visual attention maps.

In the second experiment, we aim to verify the fairness of
our selected participants. For this, we first estimated an average
visual attention map for a chunk using the selected participants
in this paper. Then, we randomly selected 17 participants
from our developed dataset. We repeated this random selection
four times. To analyze the correlation between the random
selections and our selection in this paper, we measured the
CC between the initial average visual attention map and
each random selection. Table V illustrates CC scores for four
different selections.

This analysis shows that a high correlation exists with the
results for each selection, meaning that the number of selected
participants is sufficiently enough for generating representative
visual attention maps.

2) Assessment of coding performance: To verify and assess
the expected quality (in terms of VASW-PSNR) improve-
ments, we have compared our proposed method with various
fixed-sized tiling and 1-tile (non-tiling) schemes using the
Bjøntegaard metric in Table I.

It can be observed that for seven test sequences, quality
gains ranging from 0.14 dB to 5.04 dB have been obtained
with our proposed method. As evident from the results, for all
of the tested contents, the proposed method provides important
quality enhancements with respect to both fixed-sized tiling
and 1-tile (non-tiling) schemes across a wide range of bitrates.
For usage of the 1-tile (non-tiling) scheme, sequences have
lower performance than the proposed method and some of
the fixed-sized tiling approaches. This is somehow expected
as the underlying tiling architecture of the used tiling-based
solutions reduce the bit-budget of the polar regions with
increasing number of tiles [7], [9]. The polar regions contain
significant amount of redundant pixels and those regions have
insignificant impact on visual attention [12]. We also observed
that the fixed-sized 2-2 method is the best performing one in
the category of fixed-sized tiling schemes.

We then computed rate-distortion curves for all the schemes
using our proposed VASW-PSNR measurement at the bitrates
of the target DASH representations {1, 2, 5, 10, 15} Mbps.
Fig 7 illustrated the best performing fixed-sized tiling (fixed-
sized 2-2), 1-tile (non-tiling), and our proposed dynamic tiling
approach using different set of tiling schemes.

The results show how our approach outperforms by a
significant margin the fixed-sized 2-2 as well as the 1-tile (non-
tiling) scheme for each tested content. As was expected, our
per chunk tiling optimization framework, which uses a set of
tiling schemes {S1, S2, S3, S4}, can reinforce those areas
of the ODV scene that are more likely to be watched by
selecting optimal bitrate levels and tile sizes, resulting in better
compression performance for all test sequences in terms of
VASW-PSNR (dB) measurement.

Table II shows the distribution of the decisions made by
the proposed per chunk optimization algorithm. It can be
observed that the proposed method selected various sized
non-overlapping tiles from fixed tiling scheme to create the
complete ODV. The selection was based on the formulated
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(c) Harbor
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(d) KiteFlite
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(e) Gaslamp
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(f) Driving
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Fig. 8: Performance comparison using viewport-based WS-PSNR quality over frame between the proposed method using S4
and the reference methods on varying bandwidth).

Method Sequence

Measure Basketball left Dancing Harbor KiteFlite Gaslamp Driving JamSession

fixed-sized 2-2 Mean (36.71, 39.2, 40.81) (39.32, 42.97, 44.04) (37.12, 39.73, 42.82) (33.37, 35.96, 38.65) (38.66, 43.49, 45.82) (39.4, 42.27, 43.18) (40.26, 46.34, 46.41)
Std (0.82, 0.36, 0.09) (0.33, 0.86, 0.12) (1.14, 0.54, 1.02) (0.14, 0.15, 0. 39) (0.35, 0.14, 0.08) (0.11, 0.14, 0.16) (0.39, 0.68, 0.33)

1-tile (non-tiling) Mean (36.32, 38.76, 41.06) (39.71, 42.85, 42.97) (37.11, 39.79, 42.71) (33.18, 35.4, 37.6) (39.09, 43.38, 44.8) (40.29, 41.89, 42.03) (40.83, 45.37, 46.19)
Std (0.91, 0.16, 0.24) (0.43, 1.61, 1.84) (0.72, 0.91, 0.92) (0.12, 0.52, 0.78) (0.11, 0.08, 0.55) (0.07, 1.06, 0.34) (1.1, 0.78, 0.65)

variable-sized using S1
Mean (37.28, 40.38, 42.19) (40.02, 42.8, 44.24) (37.83, 39.58, 43.04) (34.06, 35.97, 37.9) (40.43, 44.47, 45.52) (40.8, 42.09, 43.54) (42.77, 45.77, 46.5)
Std (0.56, 0.41, 0.1) (0.63, 1.23, 0.67) (1.32, 1.6, 1.25) (0.69, 0.82, 1.27) (0.29, 0.37, 0.1) (0.39, 1.87, 0.13) (0.93, 0.97, 0.24)

variable-sized using S2
Mean (37.32, 40.38, 42.19) (39.79, 43.01, 44.12) (37.34, 39.58, 42.7) (33.92, 36.17, 37.9) (40.51, 44.69, 45.52) (40.77, 41.94, 43.39) (42.42, 46.04, 46.5)
Std (0.52, 0.41, 0.12) (0.81, 1.34, 0.56) (1.62, 1.6, 1.14) (0.66, 0.93, 1.27) (0.31, 0.37, 0.1) (0.43, 1.73, 0.22) (1.53, 0.97, 0.24)

variable-sized using S3
Mean (37.53, 40.38, 42.19) (40.05, 43.25, 44.12) (37.45, 39.7, 42.71) (34.22, 36.17, 37.9) (40.74, 44.69, 45.43) (40.84, 42.19, 43.32) (42.8, 45.79, 46.5)
Std (0.51, 0.41, 0.09) (0.77, 1.32, 0.56) (1.55, 1.08, 0.64) (0.84, 0.93, 1.27) (0.39, 0.37, 0.14) (0.41, 1.31, 0.05) (1.93, 0.87, 0.24)

variable-sized using S4
Mean (37.61, 40.59, 42.27) (40.17, 43.38, 44.24) (37.4, 40.05, 42.99) (34.3, 36.19, 37.9) (40.69, 44.85, 45.52) (40.81, 42.31, 43.62) (42.77, 46.04, 46.5)
Std (0.49, 0.1, 0.1) (0.7, 1.05, 0.18) (1.33, 1.55, 0.91) (0.88, 1.14, 1.27) (0.36, 0.33, 0.15) (0.33, 1.13, 0.12) (1.83, 0.85, 0.49)

TABLE III: Mean (standard deviation) values for viewport-based WS-PSNR of reference fixed-sized tiling (fixed-sized 2-2
), 1-tile (non-tiling), and proposed method which uses variable-sized tiles over eight participants. Viewport-based WS-PSNR
score for each bitrate level is represented by 3-tuple: (2Mbps, 5Mbps, 10Mbps).

Method Sequence

Basketball left Dancing Harbor KiteFlite Gaslamp Driving JamSession

fixed-sized 2-2 (66.17, 89.80, 95.41) (82.60, 92.77, 96.21) (79.91, 92.02, 95.93) (70.26, 83.46, 91.52) (89.50, 96.09, 97.32) (84.62, 94.24, 97.22) (89.08, 96.08, 97.78)
1-tile (non-tiling) (53.27, 89.92, 94.98) (89.75, 95.40, 97.02) (82.01, 92.72, 96.31) (50.82, 82.28, 91.47) (90.79, 95.68, 96.96) (88.75, 95.16, 97.13) (90.51, 95.46, 96.65)
proposed using S4 (87.51, 95.37, 97.75) (90.64, 96.70, 98.06) (87.39, 92.78, 94.43) (74.56, 87.16, 93.04) (91.95, 95.41, 95.70) (91.59, 96.93, 98.38) (95.26, 97.72, 98.35)

TABLE IV: Viewport-based VMAF scores for reference fixed-sized tiling (fixed-sized 2-2 ), 1-tile (non-tiling), and proposed
method using S4. Viewport-based VMAF score for each bitrate level is represented by 3-tuple: (2Mbps, 5Mbps, 10Mbps).

(a) Basketball (b) left Dancing (c) Harbor (d) KiteFlite

(e) Gaslamp (f) Driving (g) JamSession

Fig. 9: Examples of optimal tiling schemes along with corresponding visual attention maps of each tested ODV sequence used
in the experiments, for the first chunk at 1 Mbps target bitrate.
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Sequence Selections

1-selection 2-selection 3-selection 4-selection

Basketball 0.9924 0.9908 0.9955 0.9970
Gaslamp 0.9892 0.9943 0.9943 0.9951
JamSession 0.9924 0.9908 0.9955 0.9970

TABLE V: Pearsons correlation coefficient scores for different
selections.
optimization algorithm which is based on VA maps of each
sequence. In addition, it is also worth noting that for these
seven test sequences, tiles of fixed-sized 1-1, 1-16, and 2-1
were not suitable due to the characteristics of their VA maps.

3) Viewport-based performance evaluation: As a further
evaluation, we computed the WS-PSNR of the actual view-
ports observed by the users for each sequence, as defined
viewport-based WS-PSNR in Eq. (16). For each frame, we
computed the WS-PSNR of the viewport that the users ob-
served using the trajectories of the eight participants left for
validation.

Fig. 8 shows how our approach can optimize the DASH
representations based on the VA map of the sequence. For this
propose, we measure the viewport-based WS-PSNR quality
using the viewport trajectory of the participant #20 in our
developed dataset. Here, we also simulate the varying band-
width which is shown in blue dashed line. As can be observed,
for most of the frames of the sequences and given different
bitrates, the quality of the viewports that the user is watching
is much higher than that of the fixed schemes. In addition,
average viewport quality shows similar significant quality
enhancement over eight users. Table III reports mean (standard
deviation) values for viewport-based WS-PSNR of references
and the proposed method using a set of schemes (S1, S2, S3,
S4) for eight participants, which were left for validation.

To provide further validation, we calculate the viewport-
based VMAF scores for a set of bitrate levels {2, 5, 10} Mbps
using the viewport trajectory of eight validation users. Table IV
reports viewport-based VMAF scores for the best performed
reference fixed-sized tiling scheme (fixed-sized 2-2 ), 1-tile
(non-tiling), and proposed method using S4. As can be seen in
the table, the proposed method using S4 can provide consistent
results with our introduced quality metrics, and for most of the
given bandwidth capacities, the VMAF quality score is higher
than the benchmark methods.

In order to provide further analysis and visualization of our
approach, we show the selected tiling scheme along with the
VA map of each ODV for the first chunk at 1 Mbps target
bitrate in Fig. 9. Looking at each sub-figure, we see that the
selected tiling scheme is well correlated with the VA map of
each ODV sequence. This further motivates the assumption
that incorporating VA into the search algorithm for an optimal
tiling scheme may lead to faster and less complex computation,
which will be part of our future research.

V. CONCLUSION

In this paper, to provide an enhanced quality of ODV
streaming viewed in head-mounted displays, an adaptive ODV
streaming pipeline is presented. The proposed system utilizes
the characterization provided by VA maps to compute optimal

DASH representations. For that, a novel objective quality
measurement that captures the fact that not all the content
of the ODV is actually watched by users has been proposed:
the visual attention spherical weighted (VASW)-based quality
measurement. Then, the use of tiling schemes to represent
the ODV content is considered by means of variable-sized
and non-overlapping tiles. The proposed system is able to
determine optimal pairs (according to the VASW quality
metric) of tiling scheme and non-uniform bitrate allocation
within tiles per each chunk of every representation.

The performance of the proposed method has been verified
in extensive experimental evaluations. Our solution has been
compared with reference adaptive streaming solutions, which
are based on naı̈ve tiling and non-tiling schemes, and are used
by most existing ODV streaming studies. The results have
shown that our proposed method achieves a significant quality
enhancement compared to both type of reference solutions for
adaptive ODV streaming. Future work will focus on increasing
the coding performance of the tiling schemes with the help
of perceptual encoding techniques, modeling the peripheral
vision of the viewport, and on faster and less complex search
algorithms for optimal tiling schemes.
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APPENDIX
WEIGHT DISTRIBUTION AND TILING FOR DIFFERENT

PROJECTIONS

A. Weight distribution for cube map
For a given frame in the traditional cube map projection

format, weight distribution on all faces of the cube map are
the same. Therefore, each pixel weight for a cube map face is
estimated using the stretching ratio as defined in Eq. (18) [45],
[66].

w(i, j) = (1 +
d2cube(i, j)

r2
)−3/2 ∀i ∈ A, ∀j ∈ A, (18)

where r = A
2 is the radius, A×A is the resolution of a cube

map face, and d2cube(i, j) is the squared distance between (i, j)
and the center of the face as defined in Eq. (19).

d2cube(i, j) = (1 + 0.5−A/2)2 + (j + 0.5−A/2)2. (19)

B. Weight distribution and for equi-angular cube map
For a given frame in the equi-angular cube map projection

format, similar as traditional cube map, weight distribution on
all faces of the cube map are the same. Therefore, each pixel
weight for a cube map face is estimated using the stretching
ratio as defined in Eq. (20) [66].

w(i, j) =
π2(

1 +
(
tan(ti)

)2
+
(
tan(tj)

)2)3/2 · Fang

,

∀i ∈ A, ∀j ∈ A,

(20)
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Fig. 10: The proposed tiling structure for cube map with its
different schemes.

with
Fang = 16 ·

(
cos(ti)

)2 · (cos(tj))2. (21)

where A × A is the resolution of a cube map face, ti and tj
are derived as defined in Eqs. (22) and (23), respectively.

ti =
π

4
·
(2(i+ 0.5)

A
− 1
)
, (22)

and
tj =

π

4
·
(2(j + 0.5)

A
− 1
)
. (23)

C. Tiling architecture for Cube map

This section describes a tiling structure for cube map
projected ODV to be used by the proposed approach in this
paper.

Each given cube map projected ODV is divided into two
equal sized spatial parts to be further split for tiles with
different sizes. Each part can be split into horizontal and
vertical divisions. For this purpose, similarly with the ERP
in this paper, we use {1, 2} for the height division, ghor,
and {1, 2, 4, 8, 16} for the width division, gver, to generate
number of tiles. By combining non-overlapping tiles, nu-
merous variable-sized tiling schemes can be generated as S
in our optimization problem. Fig. 10 shows the proposed
tiling architecture to generate a number of tiles for cube map
projection.
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