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Abstract—Omnidirectional video (ODV) represents one of the
latest and most promising trends in immersive media. The success
of ODV depends on the ability to deliver high-quality ODV to
the viewers. For this reason, new methods are needed to measure
ODV quality that takes into account the interactive look around
nature and the spherical representation of ODV. In this paper,
we study full-reference objective quality metrics for ODV based
on typical encoding distortions in adaptive streaming systems,
namely, scaling and compression. The contribution of this paper
is three-fold. First, we propose new objective metrics that take
into account the unique aspects of ODV. The proposed metrics are
based on the subdivision of a given ODV into multiple patches
using the spherical Voronoi diagram. Second, we introduce a
new dataset of 75 impaired ODVs with different resolutions and
compression levels, together with the subjective quality scores
gathered during an experiment with 21 participants. Third, we
evaluate the proposed Voronoi-based objective metrics using our
dataset. The evaluation of the proposed objective metrics and the
comparison with existing metrics show that the proposed metrics
achieve a better correlation with the subjective scores. The ODV
dataset together with the subjective quality scores and the code
of the proposed quality metrics are available with this paper.

Index Terms—Omnidirectional video, quality assessment, scal-
ing distortion, compression distortion, Voronoi diagram.

2019 Eleventh International Conference on Quality of Multimedia Experience (QoMEX)

I. INTRODUCTION

Recent years have witnessed significant interest in omnidi-
rectional video (ODV), also called 360-degree video, thanks
to its ability to create an immersive experience. This emerging
media format can be captured by 360◦ video camera systems
and rendered through head-mounted displays (HMDs) which
let the viewers look around a scene from a fixed viewpoint.
For compatibility reasons with conventional video delivery
pipelines, ODV is projected onto a 2D plane using various
projection techniques, e.g., equirectangular projection (ERP)
and cubemap projection (CMP), and projected back onto a
sphere surface at rendering time.

Quality measurement is important for the diffusion and
success of ODV, which requires considering the unique aspects
of ODV. First, this media is spherical in nature, but it is stored
and transmitted in planar representations, such as ERP and
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CMP, which introduce distortions. These distortions must be
taken into account in the quality evaluation. Second, HMDs
allow the user to freely look around a scene [1], but they show
only a fraction of the video, called viewport. Therefore, it is
necessary to evaluate the quality locally [2].

Given the importance of quality metrics for ODV, and mo-
tivated by a further understanding of the perceptual quality of
ODV, we propose new objective quality metrics that consider
the spherical nature of ODV and its viewing characteristics.
The proposed metrics are characterized by discretizing a
given ODV into multiple patches using the spherical Voronoi
diagram [3], [4], since they incur in a low projection distortion.
Specifically, the proposed objective metrics apply existing
metrics designed for traditional 2D content to each patch and
average the patch quality scores in order to get a global score.

In order to evaluate the proposed metrics, we created a new
dataset of 75 impaired ODVs with different resolutions and
compression levels, and we conducted a subjective experiment
with 21 participants in order to collect subjective scores. The
evaluation shows the effectiveness of the proposed metrics. In
particular, we demonstrate the high correlation between the
proposed objective metrics and the subjective scores of our
dataset. Our ODV dataset along with the subjective quality
scores and the source-code of the proposed metrics are avail-
able with this paper1. We expect that the proposed metrics
and the provided dataset will be beneficial for future studies
in ODV quality assessment, compression, and streaming.

The remainder of this paper is organized as follows. In
Sec. II, we summarize the related work. We then introduce the
proposed Voronoi-based objective quality metrics in Sec. III.
Afterwards, we describe the technical details of the subjective
experiment in Sec. IV. Finally, we present the experimental
results in Sec. V and conclude the paper in Sec. VI.

II. RELATED WORK

Most objective quality metrics tailored to ODV consider
the spherical viewing representation. The Craster parabolic
projection PSNR (CPP-PSNR) metric [5], for instance, uses
the Craster parabolic projection to obtain low projection distor-
tion. The Spherical PSNR (S-PSNR) [6] considers uniformly
sampled points on the sphere. Furthermore, the weighted

1https://v-sense.scss.tcd.ie/research/voronoi-based-objective-metrics/978-1-5386-8212-8/19/$31.00 ©2019 IEEE



spherical PSNR (WS-PSNR) [7] uses weights that consider the
projection distortion of the pixels in the planar representation.

Existing subjective quality assessment studies, however,
reveal different findings regarding the developed objective
metrics for ODV. For instance, the subjective quality assess-
ment results in [8] show that the existing metrics for ODV do
not achieve a high correlation with the mean opinion score
(MOS). Later, a similar study confirmed these findings by
conducting a comprehensive subjective experiment study [9].
Also, the work in [10] concluded that the traditional PSNR
metric is the most appropriate one among the existing metrics.
On the contrary, some recent works [11], [12] found a superior
performance of the objective metrics designed for ODV over
the metrics designed for traditional content.

The typical encoding pipeline for video delivery systems in-
troduces two types of visual distortions, namely, compression
and scaling. In this context, the video multimethod assessment
fusion (VMAF) metric [13] was developed for traditional con-
tent, achieving the best performance [14], [15]. However, no
related work investigated the quality prediction performance of
VMAF and other existing metrics in the presence of scaling
and compression distortions in ODV. Furthermore, most of
the related work studied low resolution content because of the
computational complexity of ODV rendering.

Considering that there is a further need for an understanding
of ODV quality measurement, in this work, we performed
a subjective quality assessment experiment with our dataset
containing high and low resolution ODVs characterized by
compression and scaling distortions. Futhermore, we evaluate
existing objective quality metrics based on our dataset, and we
propose new objective metrics.

III. VORONOI-BASED QUALITY METRICS

This section introduces the proposed objective metrics based
on the subdivision of the ODV into Voronoi patches that are
analyzed separately.

A. Voronoi Patches

We divide a given ODV into M patches using the spher-
ical Voronoi diagram [3] of M evenly distributed points on
the sphere [4], as illustrated in Fig. 1. The computation
of M evenly distributed points Pi = (Xi, Yi, Zi) with
i = 0 . . .M − 1 on the sphere is obtained according to the
following equations: αi = iπ ·

(
3−
√

5
)
, Zi = (1− 1/n) ·

(1− 2i/(n− 1)), di =
√

1− Z2
i , Xi = di · cos(αi) and

Yi = di · sin(αi), where αi is the azimuthal angle and di
is the distance of the point from the z-axis.

The spherical Voronoi diagram defines the region Πi for
each input point Pi on the surface of the sphere ΩS that
contains all points which are closer to the Pi than to any
of the other points Pl:

Πi = {P ∈ ΩS | dS(P,Pi) ≤ dS(P,Pl) ∀l 6= i}, (1)

where dS(P,Pi) is the spherical distance between the current
point P and the point Pi, i.e., the length of the shortest path
on the surface of the sphere connecting these two points.

Fig. 1: Spherical Voronoi diagram.

The regions Πi correspond to the patches that are analyzed
separately.

B. Voronoi-based Objective Metrics

Here, we extend existing planar objective metrics to ODV
using Voronoi patches. In particular, the following four planar
metrics originally developed for traditional content: PSNR,
SSIM [16], MS-SSIM [17], and VMAF [13], are extended to
VI-PSNR, VI-SSIM, VI-MS-SSIM, and VI-VMAF. For this,
we first extract M planar patches using the approach based
on the spherical Voronoi diagram. Then, a planar metric for
traditional content is applied to each patch, and finally, the
patch metric scores are averaged using the arithmetic mean.

To apply the planar metrics, the planar patches Π′i corre-
sponding to the spherical patches Πi must be extracted from
the ODV. This operation is obtained by first positioning the
patch Π′i plane on the centroid of Πi, tangent to the sphere.
The points on the sphere and the planar patch Π′i are related
by central projection, and the pixel values of the planar patch
Π′i are computed by sampling the ODV in ERP using bilinear
interpolation. The resolution of each patch Π′i is defined by
the pixels per visual angle, a parameter that is kept constant
for each patch.

IV. SUBJECTIVE EXPERIMENT

Next, we describe the technical details of the conducted
subjective experiment, where the quality of different ODVs
was evaluated by the participants.

A. Material

We used the following six uncompressed and diverse ODVs
from the joint video exploration team (JVET) of ITU-T VCEG
and ISO/IEC MPEG: V = {Basketball, Harbor, JamSession,
KiteFlite, Dancing, Train} [18]–[20]. The Train sequence
was used as training material to familiarize the participants
with the experiment while the other five ODVs were used
in the subjective assessment. Each ODV is in 8K×4K ERP
and YUV420p format, and of 10 sec. length. Spatial and
temporal perceptual information measures, SI and TI, were
calculated as described in ITU-R P.910 [21], exhibiting diverse



content complexities, as shown in Fig. 2 together with sample
thumbnail frames.

B. Design

To investigate the impact of the scaling and compression
distortions for ODV, we tested three different resolution sizes
at different target bitrate levels. For this purpose, each ODV
was downsampled to three different resolution sizes, namely,
2032 × 1016, 3600 × 1800, and 8128 × 4064, before com-
pression using the bi-cubic scaling algorithm of the FFmpeg
software (ver. 4.0.3-1 18.04) [22]. Each ODV with a different
resolution was then compressed at five different target bitrates,
which were selected in a pilot test with experts. In this pre-
study, we used the optimal resolution of ODVs displayed
by the HMD, 3600 × 1800, as recommended by Zhang et
al. [11], and for each tested ODV we decided the target bitrate
levels to correspond to different quality levels in the absolute
category rating quality scale: (“bad”, “poor”, “fair”, “good”,
“excellent”) [21].

Each downsampled ODV was encoded using the
HEVC/H.265 [23] video coding standard. For this, we
used the libx265 codec (ver. 2.9) in FFmpeg with the video
buffering verifier method to set the target bitrates. We followed
the specifications recommended by streaming providers [24],
and encode each ODV using two-pass encoding with 150
percent constrained variable bitrate configuration to ensure
smooth perceptual video quality frame by frame. We also
defined the buffer size during encoding which limits the
output bitrate to two times the maximum bitrate to handle
large bitrate spikes.

Before the subjective experiment, each stimulus was up-
sampled to the resolution of 8128 × 4064 using the bi-cubic
scaling algorithm of FFmpeg after decoding. The reason for
this up-sampling was to eliminate the impact of the unknown
resampling algorithm of the used video player by playing the
highest possible resolution that the player can render ODV for
the HMD.

C. Apparatus

In the subjective experiment, each stimulus was shown to
the participants using the HTC Vive HMD and played with
the Virtual Desktop application. Virtual Desktop is an ODV
player and an application that enables the users to watch and
interact with the desktop using the HMD and VR controllers.
We also used an open-source MATLAB GUI presented in [25],
[26]. This GUI allows the participants to assign a quality
opinion score to each stimulus without taking off the HMD.
Additionally, we recorded the participants’ HMD viewing
directions while they were watching the stimuli.

D. Procedure

To perform the subjective study, we followed the modified-
absolute category rating (M-ACR) [27] procedure. We chose
the M-ACR, because it was demonstrated in recent evalua-
tions [27], [28] that it is more reliable than existing meth-
ods developed for traditional 2D video. This methodology

increases the duration of exposition time by showing each
stimulus twice with three seconds of a mid-gray screen in
between these two presentations. Afterwards, the participants
were able to assign their opinion quality score to the stimulus.

Participants were seated in a swivel chair and allowed to
turn freely. There were two sessions; the first session was split
into a training and a test phase, while the second session had
only a test phase. Each session lasted less than half an hour.
During the training phase, the Train video sequence with five
different quality levels was displayed. Then, during the test
phase, impaired ODVs were randomly displayed (avoiding
consecutive representation of the same content) while the
individual viewport trajectories were recorded. Furthermore,
the quality scores were assigned by the participants based on
a continuous grading scale in the range [0,100], where the best
grade corresponds to 100, as recommended in ITU-R BT.500-
13 [29].

E. Participants

In all, 24 participants, 20 males and four females, took
part in our subjective experiment. Participants were aged
between 22 and 38 with an average of 29.71 years. The
gathered quality opinion scores were screened for outliers
using the outlier detection method recommended in ITU-R
BT.500-13 [29]. Three outliers were found and removed. All
participants were screened for visual acuity and found to have
normal or corrected-to-normal vision.

F. Data Processing

From the participants’ raw subjective scores, we compute
the difference mean opinion score (DMOS). For this task, we
apply the standard approach described in [30]. Given sij and
srij as the raw subjective scores assigned by participant i to
the impaired ODV j and the corresponding reference ODV,
respectively, we first compute the difference score as: dij =
srij − sij . Next, the difference score dij is converted to the
z-score as follows: zij = (dij − µi)/σi, where µi and σi are
the mean and standard deviation of the scores assigned by the
participant i. Afterwards, as recommended in ITU-R BT.500-
13 [29], a participant is rejected, if 5% of her/his z-scores are
outside the range of two standard deviations from the mean z-
scores. In the next step, the z-scores are linearly rescaled in the
interval [0,100] as follows: z′ij = 100(zij+3)/6. The rescaling
is based on the assumption that the z-scores zij are normally
distributed with mean equal to zero and standard deviation
equal to one, which means, that 99% of the z-scores zij are
in the interval [-3,3], and consequently 99% of the rescaled z-
scores z′ij are in the interval [0,100]. The final DMOSj value
of ODV j is then obtained by averaging the rescaled z-scores
z′ij of the N participants excluding the outliers:

DMOSj =
1

N

N∑
i=1

z′ij . (2)



(a) Basketball
SI: 118.24 and TI: 116.53

(b) Harbor
SI: 119.91 and TI: 98.63

(c) JamSession
SI: 109.47 and TI: 87.15

(d) KiteFlite
SI: 116.17 and TI: 98.83

(e) Dancing
SI: 121.83 and TI: 113.03

(f) Train
SI: 108.16 and TI: 87.79

Fig. 2: Sample thumbnail frames of the six ODVs with their SI and TI measures used in the subjective experiment.

(a) Basketball (b) Harbor (c) JamSession

(d) KiteFlite (e) Dancing

Fig. 3: DMOS values of the ODVs used in the subjective experiment.

V. RESULTS

In the following section, we investigate the subjective data
gathered during our experiment, and we evaluate the perfor-
mance of a selection of existing objective metrics and our
proposed Voronoi-based quality metrics.

A. Evaluation of the Subjective Data

Fig. 3 shows the plots of the DMOS values of the ex-
periment ODVs computed based on the approach described
in Section IV-F. Looking at the figure, we noticed that the
highest resolution videos (8128×4064) have the best quality
(lowest DMOS value) at the highest bitrate (13 Mbps), while
the lowest resolution videos (2032×1016) have the best quality
at the lowest bitrate (500 Kbps). These findings are especially
important for ODV adaptive streaming systems [31], where
the selection of the optimal encoding parameters is crucial.

B. Evaluation of Objective Metrics

1) Existing metrics: To evaluate the performance of the
objective metrics, we analyzed the correlation between the
subjective and objective scores by fitting a logistic function
to map the objective scores to the subjective scores. For this,
we used the logistic function in [32] as defined by

s′ =
β1 − β2

1 + e
−S−β3‖β4‖

+ β2, (3)

where s′ is the predicted subjective score of the objective score
s. In our evaluation of the objective metrics, the subjective
score predicted by the logistic function is the reversed DMOS
(i.e., subtracted from 100).

To compare the objective metrics, the following perfor-
mance metrics were applied in order to evaluate how well
the logistic function predicts the subjective score: Pearson’s
linear correlation coefficient (PLCC), Spearman’s rank ordered
correlation coefficient (SROCC), root mean squared prediction
error (RMSE), and mean absolute prediction error (MAE).
PLCC and SROCC measure the prediction accuracy and the
monotonicity, respectively. The larger these two metrics are,
the more accurate and monotonic the prediction is. For RMSE,
and MAE, the smaller the metric, the better the performance
of the prediction is.

We evaluated the performance of eight objective quality
metrics applied to the luminance channel of the ODVs used in
our subjective experiment. The first four selected metrics were
originally developed for traditional content, namely, PSNR,
SSIM [16], MS-SSIM [17], and VMAF [13]. The video
quality measurement tool [33] and the official code provided
by Netflix [34] were used for the first three metrics and
VMAF, respectively. The first three metrics are widely used
for image and video quality evaluations, while VMAF is the
best performing metric for traditional video. These metrics
were applied to ODVs in two different formats, ERP and
CMP. The remaining four metrics that we evaluated were
explicitly designed for ODV, namely, S-PSNR-I (S-PSNR
with pixel interpolation), S-PSNR-NN (S-PSNR without pixel
interpolation), WS-PSNR, and CPP-PSNR. For these metrics,
we used the implementation of 360Lib [35].

Table I shows the performance of the eight selected ob-
jective metrics. Looking at the Table, we can notice a small



TABLE I: Performance evaluation of the selected existing
objective metrics and the new Voronoi-based metrics together
with two projection formats. The best performance values are
in bold.

Metrics Representation PLCC SROCC RMSE MAE
PSNR ERP 0.8292 0.7979 8.7921 7.0102
PSNR CMP 0.8429 0.8101 8.4822 6.7224
S-PSNR-I ERP 0.8479 0.8139 8.3675 6.5937
S-PSNR-NN ERP 0.8489 0.8150 8.3432 6.5718
WS-PSNR ERP 0.8485 0.8141 8.3519 6.5790
CPP-PSNR ERP 0.8479 0.8136 8.3690 6.5954
SSIM ERP 0.7347 0.7107 10.5253 8.5131
SSIM CMP 0.7419 0.7209 10.4370 8.5427
MS-SSIM ERP 0.9085 0.8888 6.6162 5.3242
MS-SSIM CMP 0.9125 0.8954 6.4904 5.1064
VMAF ERP 0.9160 0.8861 6.2562 4.7724
VMAF CMP 0.9267 0.8998 5.9792 4.4919
VI-PSNR ERP 0.8545 0.8251 8.1746 6.4750
VI-SSIM ERP 0.8132 0.7968 9.1138 7.2579
VI-MS-SSIM ERP 0.9447 0.9334 5.2625 4.2398
VI-VMAF ERP 0.9661 0.9499 4.2356 3.1269

improvement when the metrics are applied to the CMP format
instead of the ERP format. Moreover, the performance of
the PSNR based metrics developed for ODV is close to the
performance of the standard PSNR applied to the CMP format.
Furthermore, among the evaluated metrics SSIM is character-
ized by the worst performance, even worse than PSNR. On
the other hand, the metrics with the best performance are
MS-SSIM and VMAF. Between these two metrics, VMAF is
slightly better than MS-SSIM for both representation formats.

2) Proposed Voronoi-based metrics: This section presents
the evaluation of the proposed metrics based on the Voronoi
patches. For the extraction of the Voronoi planar patches from
the ODV, we selected an angular resolution equal to 15 pixels
per degree, a resolution close to the one of the HMD used
in our subjective experiment (HTC Vive). The number of
Voronoi patches used in this evaluation is 15. We evaluated the
metrics also with 10 and 20 Voronoi patches without noticing
large differences in the performance. The performance of these
metrics is presented in Table I. According to the values in the
table, the new Voronoi-based metrics are characterized by a
better performance than the original planar metrics applied to
the ERP and CMP formats. This is expected because of the
lower projection distortion of the Voronoi patches compared
to the ERP and the CMP. Among the new metrics reported
in the table, the worst performing one is VI-SSIM. This is
not unexpected, since SSIM is also the worst performing
metric when applied to the ERP and CMP formats. After
VI-SSIM, the next better performing metric is VI-PSNR,
which has a comparable performance to the PSNR-based
metrics developed for ODV. The best performing metric is
VI-VMAF followed by VI-MS-SSIM that achieves a slightly
worse performance.

Fig. 4 shows a comparison between the fitted logistic
functions of PSNR in ERP format and VI-VMAF. In these
plots, the higher correlation of VI-VMAF with the subjective
scores is visible.

Fig. 5 shows the visualization of the VMAF patch scores,
where the patch scores are color-coded based on the jet

(a) PSNR in ERP format. (b) VI-VMAF

Fig. 4: Objective vs subjective score plots with the fitted
logistic function.

0

100

Fig. 5: Visualization of the VMAF patch scores of the Harbor
ODV with resolution 2032×1016 and encoded with target
bitrate equal to 2 Mbps.

colormap and visualized in the Voronoi diagram mapped to
the ERP format. This visualization is useful in order to easily
identify the quality of the different regions of the ODV. As
can be seen in the figure, the patch scores close to the pole
caps are larger than the ones close to the equator. This can
be explained by the larger pixel density at the pole caps of
the ERP format. This visualization also shows that diverse
VMAF scores can exist in different regions of the ERP.
Hence, the extraction and analysis of multiple planar patches
generated by the Voronoi diagram is essential to evaluate the
quality locally, substantially improving the performance of the
metrics, especially of VMAF.

VI. CONCLUSIONS

In this paper, we studied the objective quality evaluation
of ODV. In particular, we proposed new objective metrics
based on the subdivision of the ODV into Voronoi patches.
These new metrics were evaluated based on subjective data
of 75 ODVs with different resolutions and HEVC/H.265
compression levels. In order to gather the subjective data,
we conducted a subjective experiment with 21 participants.
The new objective metrics were compared with existing met-
rics applied to two different planar projection formats. This
evaluation revealed that the new objective metrics achieve a
better performance. Among all the metrics considered in this
paper, the one with the best performance is VI-VMAF. The
ODV dataset used in our experiment and the related subjective
quality scores, together with the code of the new metrics, are
made public with this paper.

In the future, we plan to evaluate the new metrics based
on videos with different distortions than the resampling and
HEVC/H.265 distortions considered in this work. Besides, we



also intend to extend these new metrics by integrating visual
attention information.
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