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ABSTRACT

In this paper, we present a compression method for light fields
based on the Fourier Disparity Layer representation. This light
field representation consists in a set of layers that can be efficiently
constructed in the Fourier domain from a sparse set of views, and
then used to reconstruct intermediate viewpoints without requiring
a disparity map. In the proposed compression scheme, a subset of
light field views is encoded first and used to construct a Fourier
Disparity Layer model from which a second subset of views is
predicted. After encoding and decoding the residual of those pre-
dicted views, a larger set of decoded views is available, allowing
us to refine the layer model in order to predict the next views with
increased accuracy. The procedure is repeated until the complete
set of light field views is encoded. Following this principle, we
investigate in the paper different scanning orders of the light field
views and analyse their respective efficiencies regarding the com-
pression performance.

1. INTRODUCTION

Light field imaging is gaining in popularity for a variety of vision
applications, thanks to the emergence of real light fields cap-
turing devices, and commercially available cameras. However,
light fields represent very large volumes of high dimensional data,
hence the need for designing efficient compression algorithms.
Many solutions proposed so far adapt standardized image and
video compression solutions (in particular HEVC) to light field
data (e.g. [1] [2] [3]). The authors in [4], [5] investigate the use of
homography-based low rank models for reducing the angular di-
mension, while local Gaussian mixture models in the 4D ray space
are considered in [6]. A depth based segmentation of the light field
into 4D spatio-angular blocks is used in [7] for prediction, and the
prediction residue is encoded using JPEG-2000.

In this paper, we describe a novel compression algorithm
based on the Fourier Disparity Layer representation (FDL) intro-
duced in [8]. This representation has been shown to be efficient
for a variety of processing applications, namely rendering, view
synthesis and denoising. The proposed compression approach it-
eratively reconstructs the light field using the FDL representation.
More precisely, an initial subset of views is first encoded with
traditional video compression methods, and is used to construct
a FDL representation of the light field. The FDL representation
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is then used to synthesize a second subset of light field views
(neighboring ones) according to a pre-defined order. Given that
there may remain correlations between the prediction residue of
these synthesized views, the residual signal is best encoded using
a video encoder with inter coding (in the experiments we used
HEVC-inter, and in particular the HM 16.10). Then, in order
to predict and encode the next subset of views, a more accurate
FDL representation is constructed from the previously encoded
and decoded subsets. The FDL representation is thus iteratively
refined after the encoding of each view subset until all the views
are encoded. Two types of scanning orders are considered for
synthesis and coding, one following a hierarchical scheme and
the other one following a circular order. In both cases, prediction
schemes with either two or four view subsets were tested. For
the best performing schemes, experimental results with real and
synthetic light fields show average rate savings of more than 50%,
using the Bjontegaard measure, with respect to the JPEG-Pleno
verification model (VM 1.1)[9].

2. NOTATIONS AND SCHEME OVERVIEW

Let us consider the 4D representation of light fields proposed in
[10] and [11] describing the radiance along rays by a function
Lpx, y, u, vq. This representation is based on a parameterization
of orientations of light rays with two parallel planes with pairs
px, yq and pu, vq respectively representing spatial and angular co-
ordinates of light rays.

The coding algorithm is depicted in Fig.1. First, the Fourier
Disparity Layer calibration described in [8] determines a set of
disparity values as well as the angular coordinates of each view.
These parameters are needed for the FDL construction and view
prediction steps, and are transmitted as metadata to the decoder.
Our coding scheme partitions the light field into subsets of views,
the first subset being directly encoded as a group of pictures using
a video encoder. This first set of views is used for an initial con-
struction of the FDL representation which allows us to synthesize
(or predict) the views of the second subset. The prediction residue
is coded, decoded and added to the prediction to reconstruct the
corresponding views. The views of the two first subsets are then
used to re-compute the FDL representation that will then be used
for synthesizing the views of the third subset. The algorithm con-
tinues iterating until all the light field views have been coded.

3. FOURIER DISPARITY LAYERS (FDL)

For simplicity of notation, let us consider only one 2D slice of the
light field with only one spatial and one angular dimension. A
view Lu0 of the light field at angular coordinate u0 is then defined
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Fig. 1. Overview of the encoding (a) and decoding (b) scheme.

by Lu0pxq “ Lpx, u0q. It has been shown in [8] that, given a set
of n disparity values tdkukPv1,nw, the Fourier Transform L̂u0 of
Lu0 can be decomposed as:

L̂u0pωxq “
ÿ

k

e`2iπu0dkωx L̂kpωxq. (1)

where ωx denotes the spatial frequency, and L̂k is defined by

L̂kpωxq “

ż

Ωk

e´2iπxωxLpx, 0qdx. (2)

Each function L̂k can be interpreted as the Fourier transform of
the central view only considering a spatial region Ωk of disparity
dk, hence the name Fourier Disparity Layers (FDL).

Givenm input views Luj (j P v1,mw) and by computing their
Fourier Transforms L̂uj , the FDL representation can be learned by
solving a linear regression problem for each frequency coefficient
ωx. Constructing the FDL amounts to solving the equation Ax “
b, with a Tikhonov regularization, where A, x, b are matrices
and vectors of dimensions m ˆ n, n ˆ 1 and m ˆ 1 respectively.
The matrix A is defined as Ajk “ e`2iπujdkωx , while the vector
x containing the Fourier coefficients of the disparity layers (for
the frequency ωx) is defined as xk “ L̂kpωxq, and b containing
the Fourier coefficients of the input image j is defined as bj “

L̂uj pωxq.

4. VIEW SYNTHESIS USING FDL

Knowing the layers and their disparities dk, any view Lu0 , at an-
gular position u0, can be synthesized in the Fourier domain using
Eq.(1), and by computing the inverse Fourier transform. One im-
portant issue that can have a strong impact on the quality of the
synthesized views used for prediction, is the view synthesis (or
prediction) order. Typically, views that are close to the input views
of the FDL construction step are better synthesized than more dis-
tant views. Furthermore, it was observed in [8] that constructing a
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Fig. 2. View subsets for different view prediction orders: (a)
Circular-4, (b) Hierarchical-4, (c) Circular-2, (d) Hierarchical-2.

FDL from all the outer views at the periphery of the light field is
an ideal configuration for synthesizing the inner views.

The circular prediction order illustrated in Fig. 2(a) was de-
signed following those insights. To give an example with a light
field of dimension 9 ˆ 9, the circular scheme starts by encoding
the views in the middle of each segment forming the periphery
(in dark blue in Fig. 2(a)). The four adjacent views (light blue)
are then synthesized using the FDL constructed from the base
views. The prediction residue for these 16 views is then coded
with HEVC inter, decoded and added to the synthesised views.
The reconstructed views at the corresponding positions will then
be used together with the base views to refine the FDL represen-
tation. The algorithm iterates considering next the 12 views “clos-
ing” the circle (green in Fig. 2(a)). Note that we preferred form-
ing a circle rather than a square in order to avoid using the corner
views for predicting the inner views. This choice is motivated by
the fact that, in real light field datasets captured by plenoptic cam-
eras, the corner views are generally of lower quality. A simpli-
fied circular prediction scheme was also designed as shown in Fig.
2(c), where only two subsets are used, and all the views forming
the circle are contained in the initial subset.

For the comparison, we have also designed and tested more
traditional hierarchical configurations as shown in Fig. 2(b)
and (d) respectively with four and two subsets. The prediction
schemes in Fig. 2(a),(b),(c), and (d) are referred to as Circular-4,
Hierarchical-4, Circular-2, and Hierarchical-2 respectively.

5. CODING SCHEME

5.1. FDL Calibration
To construct the FDL, one first needs to estimate precise angular
coordinates uj of input views as well as the layers’ disparity values
dk. The joint estimation of these two sets of parameters allows
the method to be robust to common issues with real light field
data, e.g. to the fact that the angular coordinates of all the views
may not form precisely a square grid as it is generally assumed.
These parameters uj and dk are found by minimizing over the Q
frequency components ωqx (Q being the number of pixels in each
input image) [8]
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where the input view positions uj and the disparity values dk
are arranged in the vectors u and d respectively, and where
rApωqx,u,dqsj,k “ e`2iπujdkωx . The vectors xq and bq con-
tain the Fourier coefficients of, respectively, the disparity layers
and the input images at the frequency ωqx (i.e. xqk “ L̂kpωqxq and
bqj “ B̂jpω

q
xq). The regularization matrix Γ is defined as a dis-

crete approximation of the second order differential operator:
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Note that the calibration results depend on the regularization
parameter λ. We optimize this parameter by performing several
calibrations with different values of λ. Given a prediction order
in our coding scheme (see Fig. 2), we keep the calibration results
yielding the best predictions in the least square sense. For this
step, the prediction of a subset of views does not take into account
the compression loss of the previous subsets, in order to avoid
performing the complete compression algorithm only to determine
λ. Therefore, the disparity values dk and view positions uj are
learnt for optimal predictions within our coding scheme.

5.2. Prediction Scaling
Additionally, in order to cope with possible variations of illumina-
tion between views, we perform a scaling of each predicted view.
Let the image I be one of the views, and Ipr its prediction ob-
tained using the FDL view synthesis. The final prediction ĂIpr is
then computed as ĂIpr “ s ¨ Ipr , where the scaling factor s is de-
rived by the encoder to minimize the sum of squared error of the
scaled prediction as follows:

arg min
s

‖I ´ s ¨ Ipr‖2
2 “

xI, Ipry

‖Ipr‖2
2

, (5)

where x¨, ¨y is the inner product. The value of s is transmitted as
metadata in order to perform the same prediction scaling on the
decoder side.

5.3. Encoding of metadata
All the transmitted parameters (i.e. scaling factors, set of disparity
values and angular coordinates), are encoded in the double preci-
sion floating point format with a fixed length encoding, resulting
in 64 bits for each parameter. The additional cost is accounted for
in the results presented in Section 6.

5.4. Encoding of initial views and view residuals
The initial set of views is directly encoded as a video sequence
using HEVC 8 bits with inter coding. For the other views, the
prediction residual is also encoded in HEVC. Since the predic-
tion residual requires one additional bit of precision compared
to the original signal, we avoid the risk of precision loss by us-
ing HEVC 10 bits. Furthermore, due to imperfections either in
the original signal or in the FDL view synthesis, correlations may
remain between the prediction residual of the different predicted

views. Therefore, at each iteration, the current subset of views to
encode is arranged in a sequence and encoded using HEVC-inter.
For both the circular and the hierarchical prediction schemes, the
views are arranged in a spiral order starting from the center of the
light field, and only considering the views of the current subset.

In order to optimize the bitrate allocation, we use different
QP parameters in the HEVC encoding of the different subsets of
views. Let QP1 be the base parameter used for the initial subset
of views, then we use QPt “ QPt´1 ` 1 as the parameter for the
subset of index t in the coding order.

6. EXPERIMENTAL RESULTS

6.1. Experimental Setting
Experiments were performed using the luminance component of
light fields coming from the HCI [12], INRIA [13] and ICME
2016 Grand Challenge [14] datasets. The HCI dataset contains
synthetic light fields with 9x9 views of 768x768 pixels (Buddha,
Butterfly, StillLife) and with 9x9 views of 512x512 pixels (Greek,
Sideboard), the INRIA and ICME datasets originally contain light
fields captured by a Lytro Illum camera with 15x15 views of
625x434 pixels from which we keep the 9x9 central views (to
avoid strong vignetting issues) of 616x424 pixels (to remove the
black borders and ensure the size is a multiple of 8 for the HEVC
coding). The Lytro LFs have been extracted using the Matlab
Light Field Toolbox v0.4 [15] with gamma correction.

The performances of the proposed FDL coding schemes have
been compared to JPEG Pleno VM 1.1 [9] and to the HEVC cod-
ing of all the views arranged in a spiral order. The latter method
can be seen as a particular case of our approach where all the views
are in the initial set. It is therefore referred to as the Circular-1
scheme. For Circular-1 and our FDL coding schemes, the HEVC
encoding is performed using the HM 16.10 with the Main-RExt
profile and the random access configuration. We have used a range
of quality parameters QP P t5, 10, 15, 20, 30, 40u (which corre-
sponds to the QP parameter of the initial view subset in our ap-
proach). For our FDL coding schemes, we have fixed the number
of layers in the FDL method to n “ 30. Although the random
access configuration was used for HEVC coding (intra period of
32), the random access capability of our approach is limited by
the fact that the views of the last subset are dependant on those
of the previous subsets. In practice, for the four variants in Fig.
2, the percentage of the bitstream required to decode one view in
the worst case is about 80% at high bitrates (QP “ 40) and about
95% at low bitrates (QP “ 5).

For JPEG Pleno, the required input central disparity maps have
been generated using [16] and the configuration files provided with
JPEG Pleno VM 1.1 have been adapted for use on 9x9 light fields.

6.2. Results
The rate-distortion results are presented in Fig. 3 for two real and
two synthetic light fields. For all the tested light fields, the bitrate
savings of the different variants of our coding scheme, as well as
the direct HEVC encoding (i.e. ‘C1’) are presented in Table 1.
They have been computed with the Bjontegaard metric [17] using
JPEG-Pleno as a reference.

We observe in Table 1 that the Circular-2 (respectively
Circular-4) scheme systematically outperform Hierarchical-2 (re-
spectively Hierarchical-4). This result supports the idea that using
a set of connected peripheral views to construct the FDL rather
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Fig. 3. PSNR-Rate performance on real (top) and synthetic (bot-
tom) light fields from (a) INRIA, (b) ICME and (c,d) HCI datasets.

Method H2 C2 H4 C4 C1
Bench -25.53 -34.3 2.76 -15.05 -10.29
Fruits -35.54 -46.02 -4.05 -22.12 -11.67
Toys -48.17 -51.2 -4.56 -16.24 -52.67
Bikes -41.18 -47.31 1 -15.82 -20.05
D de M -29.78 -40.42 -3.62 -21.61 1.54
F & V 2 -45.89 -48.64 -8.18 -27.44 -28.37
Friends 1 -46.41 -48.75 -21.5 -37.39 -21.41
S P I -28.25 -33.22 41.08 7.19 -41.06
Vespa -43.87 -47.55 21.07 -7.49 -23.45
Greek -58.44 -67.31 20.47 -2.14 -52.24
Sideboard -56.31 -64.14 54.27 27.09 -13.63
Buddha -62.69 -68.21 -8.19 -26.97 -31.73
Butterfly -86.03 -86.96 -72.6 -75.16 -75.6
StillLife -49.8 -60.99 44.85 16.51 -60.11
Average -50.11 -56.5 -1.54 -20.42 -35.42

Table 1. Bjontegaard percentage rate savings for the Hierarchical-2
(H2), Circular-2 (C2), Hierarchical-4 (H4), Circular-4 (C4), and
Circular-1 (C1) schemes with respect to JPEG Pleno VM 1.1 (nega-
tive values represent gains).

than a more scattered set substantially improves the view predic-
tion. Additionally, the variants of our coding scheme with only
two subsets (i.e. Circular-2, Hierarchical-2) have significantly
better performances than the ones with 4 subsets (i.e. Circular-4,
Hierarchical-4). This may be due to high frequency artifacts in the
predicted views caused by the FDL construction from a too sparse
set of known views.

Compared to JPEG-Pleno, more than 50% rate gains are ob-
tained on average for our variants with two subsets, This is a sub-
stantial improvement over the average 35% gain of the Circular-1
method which directly encodes all the views in HEVC with the
same configuration. It can also be observed in Figs. 3 and 4 that
particularly large PSNR gains are obtained for very low bitrates,
especially compared to JPEG-Pleno. This can be explained by

(a) Original (b) JPEG-Pleno
(0.0073 bpp / 23.94 dB)

(c) C1 (0.0058 bpp / 25.6 dB) (d) C2 (0.0055 bpp / 28.63 dB)

Fig. 4. Visual comparison of the reconstructed top left view image
for JPEG Pleno VM 1.1, Circular-1 (C1) and Circular-2 (C2).

the very limited amount of additional data needed to perform our
predictions. On the other hand, JPEG-Pleno requires the trans-
mission of a complete disparity map, which results in a significant
overhead for low bitrate coding.

Note finally that another advantage of our approach is to allow
scalable light field coding. Since the FDL model can be used to
synthesize any view of the light field, a complete light field can be
reconstructed by the decoder at each iteration. By decoding addi-
tional view subsets, a more accurate light field is obtained. In that
sense, despite their lower performance, the schemes with 4 itera-
tions (i.e. Circular-4, Hierarchical-4) may be preferable in some
scenarios as they provide additional levels of scalability. Further-
more, Circular-4 still clearly outperforms the JPEG-Pleno anchor
in most cases (20% bitrate savings on average).

7. CONCLUSION

We have presented a novel light field compression method based
on the Fourier Disparity Layer representation. In the proposed
scheme, the light field is partitioned into several subsets of views,
where the first subset is encoded as a video sequence using HEVC.
The next subsets are iteratively predicted from the previously en-
coded and decoded ones thanks to the Fourier Disparity Layer
view synthesis, and only the prediction residual is encoded with
HEVC. We have shown that defining view subsets forming a cir-
cular pattern is better suited to this prediction scheme than the
more conventional hierarchical coding order. In the tested config-
urations with only two subsets of views, significant bitrate savings
were obtained in comparison to both JPEG-Pleno and a direct en-
coding of all the views with HEVC. Using more subsets with our
circular coding order still outperforms JPEG-Pleno, but reduces
the performance compared to the case of two subsets. However, it
provides additional levels of scalability since the FDL model re-
fined with each decoded subset can be used to synthesize any view
of the light field.
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