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Abstract—In this paper, we present a new Light Field rep-
resentation for ef cient Light Field processing and rendering
called Fourier Disparity Layers (FDL). The proposed FDL rep-
resentation samples the Light Field in the depth (or equivalently
the disparity) dimension by decomposing the scene as a discrete]
sum of layers. The layers can be constructed from various types
of Light Field inputs including a set of sub-aperture images, a
focal stack, or even a combination of both. From our derivations
in the Fourier domain, the layers are simply obtained by a Fig 1. Fourier Disparity Layer representation. For the visualization, the layers
regularized least square regression performed independently at are shown in the spatial domain (i.e. after inverse Fourier Transform). The
each spatial frequency, which is ef ciently parallelized in a GPU magnitude spectrum of each layer is also shown in the red boxes. Note that
implementation. Our model is also used to derive a gradient the FDL representation differs visually from a focal stack: the out-of-focus
descent based calibration step that estimates the input view regions tend to disappear while the regions in focus have enhanced contrasts.
positions and an optimal set of disparity values required for

the layer construction. Once the layers are known, they can be pgsed rendering techniques [6]-[11], deep learning methods

simply shifted and Itered to produce different viewpoints of either exploiting a depth map estimation [12], [13] or not
the scene while controlling the focus and simulating a camera '

aperture of arbitrary shape and size. Our implementation in the [1.4]_[1_6]* and approaches Ieveraging.sparsity priors of the
Fourier domain allows real time Light Field rendering. Finally, ~Light Field data in a transformed domain [17]-[20]. However,
direct applications such as view interpolation or extrapolation although viewpoint interpolation greatly simpli es the capture

and denoising are presented and evaluated. of dense Light Fields, it also increases the amount of data to
Index Terms—Light Fields, Fourier domain, rendering, refo- Store and process for the nal rendering application.
cusing, view interpolation, denoising. Alternatively, Light Fields can be represented as a focal
stack, that is, a set of shallow depth of eld images (e.g.
I. INTRODUCTION photos taken with a wide aperture) with different focusing

Light Fields are commonly represented as 4 dimensiorf§Pths. This representation has the advantage of allowing
functions with 2 spatial and 2 angular dimensions [1], [2R" unlimited angular density with few images because the
They can be seen as 2D arrays of images (called sub-aper@@Pling is performed on the depth dimension instead of
images), each having an unlimited depth of eld, and differing @ngular dimensions. However, for rendering tasks such as
from their neighbour images only by a slight shift of théimulating a different camera aperture size or shape, or a
view angle. The sampling in the angular dimensions is k&j/@nge of viewpoint, the common approach is to rst convert
in Light Field imaging [3]. In particular, densely sampled e focal stack into the 4D representat!on. For instance, Levin
Light Fields make it possible to directly render images witAnd Durand [21] retrieve sub-aperture images by the deconvo-
shallow depth of eld while controlling the focus depth. Suchution of shifted and averaged focal stack images. A similar
rendering, often referred to as Light Field refocusing, dogconvolution technique is used in [22] to rst synthesize the
not require knowledge of the scene's geometry. It is usuaIﬁP ngh.t Field from a focal stack in order to render images
performed either by shifting and averaging the sub-apertdﬁ@h arbitrary aperture shapes. More regent methods have also
images [4] or by selecting a 2D slice in the 4D Fourieheen propos_ed to reco_nstruct t_he 4D Light Field from a focal
domain [5]. However, a dense angular sampling comes s&gc_k elth_er in the s_patlal dome_un using _depth from focus [23],
the expense of very high requirements in terms of captuf¥,via optimization in the Fourier domain [24], [25].
storage, processing power and memory. A too sparse anguIaThe main motivation of this work is to simplify the handling
sampling, on the other hand, does not allow for a smoof Light Fields through the de nition of a compact represen-
transition between viewpoints and causes angular aliasingt@ion which, unlike focal stacks, can be directly used for
the refocused images, characterized by sharp structuresily Light Field rendering task. In this aim, we propose the
the out of focus regions. The importance of a dense angufzgurier Disparity Layer (FDL) representation illustrated in Fig.
sampling is clearly shown by the vast literature on viewpoirdt It can be easily constructed either from a 4D Light Field,
interpolation. Several approaches exist including depth imagefocal stack, or even a hybrid Light Field combining sub-

aperture and wide aperture images with varying parameters
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is constructed using linear optimization. For each frequendysplays reproduce the Light Field using a stack of light
component, a linear least squares problem is solved to des#ttenuating LCD layers placed in front of a backlight. Thanks
mine the corresponding Fourier coef cients of the differentb the distance separating the LCD panels in the display, the
layers, each layer being associated to a given disparity valimage perceived depends on the observer's position and is pro-
The layers can then be directly used for real time renderingprtional to the product of the layers. This layer representation
For instance, sub-aperture images are obtained by shiftings similarities with the one presented in this paper, and it can
the layers proportionally to their associated disparity valume constructed either from the Light Field views [26], [27] or
and by averaging them. This is directly implemented in thfieom a focal stack [28]. The main difference however, is that,
Fourier domain as a simple linear combination with frequencipecause of the physics of the light attenuating LCD layers,
dependent coef cients. More general rendering with arbitrathe sub-aperture images of the Light Field are reconstructed
point of view, aperture shape and size, and focusing depthais a product of the layers' pixels instead of a sum. Hardware
performed with the same computational complexity withodimitations also impose constraints on the layer representation.
the need to rst reconstruct the 4D Light Field. For instance, the number of layers is generally small (e.g. 3 to
In the case where the input is a set of sub-aperture imagg},which is often insuf cient to accurately represent the whole
we propose a gradient descent based calibration methodLight Field. Furthermore, the layers must only have positive
determine their angular coordinates as well as the optinykel values in order to be displayed on the LCD panels. This
set of disparity values. The formulation of the optimizatiogonstraint is not required in our model, which allows us to
problems for the calibration and the layer construction agd ciently construct the layers in the Fourier domain.
closely related. Nevertheless, we de ne two regularization

schemes with different properties to better suit each situation... . . .
o . Similarly to the FDL method proposed in this paper, Alonso
Additionally, we demonstrate the effectiveness of our ap- Y brop bap

. o . AR al. [25] construct layers by an optimization in the Fourier
proach for several direct applications. First, when the inp main. However. their method is limited to a focal stack

Is a sparse set of sub-aperture images, view mterpolaﬂ%rbut_ In this con guration, the problem is well conditioned

and extrlapolatlon 'S obtamed by constrgctmg th? FDL re'f)'ecause the input images already contain dense angular infor-
resentation and by rendering views at intermediate angular

) ) S ation and each constructed layer is associated to the focusing
coordinates with an in nitely small aperture. In a seconfg]

apolication. the same viewboints as the inout are render epth of one of the focal stack images. Hence, no regulariza-
pp ' . P . P t?gq scheme was considered for this application. The method
to produce a denoised result. For this use case, we pre

. . : ) 8% ropose is more generic as it can also construct the layers
a possible extension of the model where the shift applied to brop g y

each layer is not constrained to be proportional to the angu il sgb-aperture_ image_s. Therefore, speci ¢ regularization
dinat f the view to reconstruct. The relaxed mods%rategles are stu_dled,_ Whlch a||0W_S us _to adqlres_s a much_larger
coordinates o S . Fange of applications including calibration, view interpolation,
allows a more accurate representation of occlusions and na%'noising otc
Lambertian effects in the scene. A
Since the computational complexity is a key aspect mo-
tivating the need for a new Light Field representation, our Finally, the proposed FDL representation directly relates
implementation makes ef cient use of the GPU at every stdp the dimensionality gap Light Field prior described by
of the processing chain (i.e. calibration, layer constructiohgvin and Durand [21]. It states that the support of the
rendering). The proposed algorithms are built upon simpléght Field data in the 4D Fourier domain is a 3D manifold
linear algebra operations performed independently at eaghich was later characterized as a hypercone in [29]. By
frequency component, which makes our approach particulaggditionally considering the limited depth range of a scene,
suitable for GPU parallelization. Dansereau et al. [29] determined that the frequency-domain
In summary, the contributions are: support of the Light Field forms a hyperfan. They de ne this
De nition of the Fourier Disparity Layer representationSNaPe as the intersection of the hypercone with a dual fan
and its construction from other Light Field representd2reviously described in [30]. In this paper, we derive the FDL
tions (e.g. sub-aperture images, focal stack, combinatifPresentation from the dimensionality gap prior assuming a

of focal stack images and sub-aperture images). discrete set of depths instead of a continuous range. For the
Calibration method jointly determining the input viewdiscrete depth case, we show formally in Section IV-A that this
positions and disparity values of the layers. prior is itself derived from the assumption of a non-occluded

Fast and advanced Light Field rendering from the FDE@mbertian scene. This is a limitation for any method directly
representation with simultaneous control over the vievgnforcing the dimensionality gap prior. For instance, as ob-
point, aperture size, aperture shape and focusing deptﬁ‘?rved in [21], [29], in the reconstructed sub-aperture images,

Analysis of other application scenarios: view interpola@ccluding objects may appear transparent near the occlusion
tion and denoising. boundaries. However, semi-transparent objects and re ections

on at surfaces are accurately reproduced, which is particularly
challenging for depth image based rendering methods. We also
present in Section V-C a possible generalization of our layer

Related Light Field representations have been used ritodel to allow a better representation of other non-Lambertian
the design of several Light Field displays [26]-[28]. Theseffects and occlusions.

Il. RELATED WORK



TABLE |
TABLE OF NOTATION

Leyuy) Symbols | Description

Light Field with spatial coordinat& and angular

Lpcug coordinateu.
N Ty, by Respectively spatial and angular frequencies.
“ Lug Sub-aperture image at positieny (Lu,pxgq Lpx;uo0).
BS 0 Image with refocus parametsrand positionug.

Fig. 2. Two-plane parameterization. The focal plamey qis parallel to the

camera plangu; vq and located at a distane. Aperture function.
Uo Angular coordinate of the view to reconstruct.
u Angular coordinate of a known input view.

Hl. L 1GHT FIELD NOTATIONS dx Disparity value in the Light Field.
. ) ] ] b Region of disparitydx in an image of view positiom.
Let us rst consider the 4D representation of Light Fields Dirac delta function

in [1] and Lumigraph in [2] parameterized with two paralle 7 Fourier transform of a functiof.

planes, as illustrated in Fig. 2. The 4D representation descrilyes 3 Transpose of the matriA .

the radiance along rays by a functidmpx;y; u;vq where N Complex conjugate oh_(Without ranspose).

the pairspx;yq and pu; vq respectively represent spatial and— 4
angular coordinates. For simplicity of notation, we consider Ak
a 2D Light Field L px; uq with one spatial dimension and A'k
one angular dimension, but the generalization to a 4D Light
Field Lpx; y; u;vqis straightforward.

In this paper, we use the notion of dlsparlty instead of depth 1IV. FOURIERDISPARITY LAYER REPRESENTATION

Given the deptley of the focal plane in Fig. 2, a depthcan : : . .
be directly converted into a disparity with d 22 (i.e. A. Light Field Prior and FDL Representation

objects at deptty from the camera plane have zero disparity). For the derivations, we assume that the scene is Lambertian,
Refocusing the Light Field then consists in de ning a neWithout occlusion, and can be divided intospatial regions
Light FieldLYx;uq Lp us;uq The refocus parametsr ~ k with constant disparityl,. Formally, this can be written:

is de ned such that the regions of dispardy s in the Light @ P \L: nw @p; ug P R:L udv:ua Lok Og (4

Field L, have a disparity equal to zero in the Light Figld ' p,- a _k e U PG Tg (_)

A refocused image, noteBS, is then formed by refocusing Here, the spatial regionsy are de ned for the central view

the Light Field with parametes and integrating the light rays atu 0. From this assumption, we prove in Appendix A that
over the angular dimension as described in [4]: the Fourier transform of the Light Field can be decomposed
as follows:

Conjugate transpose @f (A AJ).
Element ofA on thej " row andk™ column.
kth column of matrixA .

Xk kth element of vectox.

»

BSmx(q Lpx  us;uq pucdu: (1) Coylug ~ pu dd d*p g (5)
R

k .
where puqrepresents the aperture of the imaging system. Yhere(¥ is de ned by
the case wher®° is captured by a camera with an aperture

»

k 2ix! . .
areaA (typically a disk), then is de ned by: c P xq ) € L px; Ocplx: ®)
' 1 if uPA Each function* can be interpreted as the Fourier transform
puq 0 otherwise. (2)  of the central view only considering the regiop of disparity

d«. Hence, we call these functions Fourier Disparity Layers
EDL). One can note from Eg. (5) that the Light Field infor-
ation is entirely contained in the Fourier Disparity Layers
and their associated disparity valudg. We will show that
the layersl’k can be constructed either from sub-aperture or
» wide aperture images without knowing the regions In other
B3, IXq Lp<  us;up uq pucdu: (3) Wwords, our method does not require a disparity map. However,
R the disparity valuegly are necessary. Hence, a method for
estimating these values is also presented in Section V-B.
Note that when the aperture area is in nitely small, the Another interpretation of Eq. (5) is that the Light Field
function is equal to the dirac delta function In this case, js sparse in the Fourier domain and the non-zero values
the image formed by Eq. (3) is the sub-aperture image notgek |ocated at frequencies such that  di! x for each
Ly, and de ned byL,,xq Lpx; Uog disparity valued, of the Light Field. This is similar to the
The different notations used in the article are summarizéihht Field prior referred to as dimensionality gap prior in
in Table 1. [21], and resulting in the de nition of the hyperfan lIter in

In this paper, we use a more general version of EqQ. (
where the image can be observed at any positigron the
camera plane with any given aperture:



[29]. However, these previous works consider a continuous V. CONSTRUCTION OF THELAYERS
disparity range, which does not allow for a practical layer
representation, since it would result in an in nite number
layers.

The layer construction is performed from a sehoimages
Oﬁotedtqum;mW that follow the model of Eq. (3) (e.g.
images captured by cameras on the same plane and oriented
perpendicularly to this plane). Each imae is associated
with its angular coordinatey;, aperture function ;, and
refocus parametes; . Thanks to the genericity of this model,
Sub-aperture images:Here, we derive the relationshipdifferent forms of input data may be used. For example, in
between the FDL representation of the Light Field and thie case of a set of sub-aperture images, the aperture function
Fourier Transforml,, of a sub-aperture image.,. Note j of each image is equal to the dirac delta functiorNote
that inCy,,, the Fourier Transform only applies to the spatiahat, in this case, the refocus paramaehas no in uence in
dimension. Hencel',, is obtained from the Light Field's the equations (e.g. see Eq. (10)) and is not required. Another
spectruml by applying the inverse Fourier transform in theotable example is that of a focal stack input (i.e. images with

B. FDL Decomposition of Images

angular dimension as follows: the same angular coordinatgsand aperture functions; , but
» g with different refocus parametess).
Cuoli q e 2Uolufy ot Ll y: ) The layer construction problem is formulated in the general

case in the next sub-section, assuming all the image parameters
are known. Then, in sub-section V-B, we show how to deter-
Using the FDL decomposition dip 4;! .qfrom Eq. (5), mine the positionsy; of the views and the layer's disparity
the transformed sub-aperture image can be directly derivedialuesd, when the input data is a set of sub-aperture images.

Cuo x4 » g ®) A. Problem Formulation
C*pl «q e 2oty gy d! !y (9)  The results of Egs. (10) and (16) show that for a xed
k 8 spatial frequency x in the Fourier domain, the imag& can
Toe Zuoddx kg g (10) be simply decomposed as linear combinations of the Fourier
k Disparity Layers. Therefore, the FDL representation of the

General image modelNow, considering the general modelL|ght Field can be learned by linear regression for every

. . . - coef cient in the discrete Fourier domain.
in Eq. (3) the Fourier Transform of an ima is: . .
a ) at We rst compute the discrete Fourier TransfoBy of each

éﬁ P xq imageB; and we construct, for each frequency comporent
g » g a vectorb such thato; B p «q Given the disparity value
e 2x Lpx  us;up ug pucdu dx dkx of each layer K P \1;nw, we also construct the matrix
8 8 A PC™ " with:
(11)
» g » g - . 2iu jdg! x N .
puq e 2i px usdq x Lp(; Uo UCﬂXdU (12) Ajk € ! ] Fj XFBJ quq (17)
»88 8 By de ning the vectorx with xy Ckp g the FDL
g 2iust « Fllcﬁuo uP xodu: (13) decomposition in Eq. (16) is reformulated Ax b. A
8 simple layer construction method then consists in solving an

ordinary linear least squares problem independently for each

Using the FDL decomposition (ﬁ“[) u from Eq. (10), we frequency componernty . In practice, however, this may be an

obtain: ill-posed problem. It is typically the case when the number of
available images is lower than the number of layers required to
3‘30 P «q represent the scene (ira. n). More generally, depending on
» g the input con guration, and for some frequency components,
e 2 x g e 2 Mo udkixfky oy the matrixA may be ill-conditioned. This results in over- tting
8 k and extreme noise ampli cation when the layer model is used
. (14)  to render new images of the scene (e.g. view interpolation or
s 2iu ode! « [k 8 2iu pde s extrapolation). In order to avoid this situation, we include a
€ P xa € Pucdu Tikhonov regularization term in the problem formulation:
K 8
(15) x argminkAx bk;  kx K5; (18)
T Aot deqq C¥p kg (16) )
K where is the Tikhonov matrix, and is a parameter

controlling the amount of regularization. The problem (18),

One can easily verify that in the particular case of an in niteI¥1aS a well-known closed form solution:

small aperture such that , we have” 1, thus Eq. (16)
becomes equivalent to the sub-aperture case in Eq. (10). X pA A q A b; (19)



where is the Hermitian transpose operator (i.e. complewith P ud?, and each columik of the corresponding
conjugate of the transposed matrix). gradient matrixr P is:

In our implementation of the layer construction, the . q A~ 395 )
Tikhonov mat?ix is de ned according ¥o the"d order view P 4 Im ’?XE Ap qu( PAR Pt big;
regularization scheme presented in subsection V-D1 (see Eq. K (23)
(29)). It encourages smooth variations between close viewhere is the Hadamard product (i.e. element-wise multipli-
points generated from the FDL model, which is intuitively @ation), andim is the imaginary part. Note that the matrix
desirable property for a Light Field. Ap 9Pqwas previously constructed to determixi® and can

thus be re-used in Eq. (23) to ef ciently compute the gradients.
The computations are further accelerated by performing a
B. FDL Calibration stochastic gradient descent, where only a small subset of the
Q frequency componentsd is selected randomly at each

We additionally propose a calibration method that jointljteration for the gradients computation. In our implementation,
estimates the layers' disparity valuel and the angular subsets of 4096 frequency components were selected. There-
coordinatesu; of the input imagesB;. For simplicity, the fore, the computational cost per iteration does not depend on
calibration is restricted to the case of sub-aperture images wifi¢ image resolution.

in nitely small aperture such that; . In this case, Eq.  Finally, given the gradients, the updated vectotsand d*?
(17) has a simpler expressigny, e 24 id%'x Note that are then computed as
in the general con guration where the aperture is unknown, ru rd
: ul u —————;and dt d ———; (29)
both the aperture functions; and the refocus parametess ' '
} kr uk, kr dk,

would also need to be estimated. However, that generalizatioH
is out of the scope of this paper and is left for future work, Vnere
In what follows we expressA as a matrix function
A:R™ "N C™ " such that, for a matrit P R™ ",
ApMgx e 2 Mix | The calibration problem can then be
stated in a similar way as the layer construction problem (18) cgajlibration of a Relaxed FDL Model
by treating the calibration parameters as unknowns in th
minimization. However, these parameters do not depend
the frequency. Hence, the function to minimize is express
as a sum over th® frequency components? (Q is equal to
the number of pixels in each input image):

is a small value encouraging the stability of the

algorithm when the gradients become small (i.e. wheand

d are close to an optimum). In our experiments a xed value
0:2 was used.

iDue to the assumptions of non-occluded Lambertian Light
Id in the problem de nition, the FDL representation may
m‘lfroduce distortions in occluded regions or for strong non-
Lambertian effects. In order to better cope with this limitation,
we propose a relaxation of the FDL model. In the original
0 FDL calibration (see previous subsection), the parameters in
min Ap 9ud? k@ b ; kx %2 ; (20 U and d form a parameter matri® ut_jJ, where each
xdiuid g elementPj, corresponds to the shift applied to th® layer
to approximate thg ™ input sub-aperture image. Sinae
where the input view positions; and the disparity valuesand d are column vectors, the rank of the shift parameter
dq are arranged in the column vectots and d respec- matrix P is equal to 1. Hence, the shift applied to each
tively (ud? PR™ "). The vectorsx? and b9 contain the layer is proportional to the angular coordinates of the view

Fourier coef cients of, respectively, the disparity layers antp reconstruct. However, this property is not suitable for non-
the input images at the frequenty (i.e. x| Ckp dgand Lambertian surfaces and occlusions. Therefore, in the relaxed

qu |§j p 90). Unlike the layer construction problem, the maFDL model, we remove the rank 1 constraint by searching

trix  is de ned according to the™ order layer regularization directly for the matrixP instead ofu andd in the calibration

approach detailed in subsection V-D2 (see Eq. (30)). algorithm. For.that purpose, _the gradient descent is applied
In order to solve this problem, we perform a gradierHS'ng the gradients P de ned in Eq. (23). In order to obtain

descent along the vectors of parametarsand d. At each satisfying convergence, the matrR is initialized by the

iteration, the current estimate ofandd is rst used to update solution of the original rank 1 constrained probl_em. .
the layers values in each vecto? using Eq. (19). The layers The advantage of the relaxed model for handling occlusions

values are then used to compute the gradienisandr d of or strongly non-Lambertian effects is illustrated in Section
the objective function in Eq. (20) along andd respectively. VIII-B for the Light Field denoising application. Note that, for

) . . this application, we only need to reconstruct the input views
By differentiation with respect to each elementandd, for which the shift parameters were obtained in the matrix
one can show that the gradients are expressed as:

P. Hence, at each frequendy, the Fourier coef cients of
the reconstructed views are given Byp JP ox9. However,

ru dir Pjk (1) for more general rendering tasks (e.g. view interpolation,
3" refocusing), the rank 1 constraint is necessary in order to apply
r dg uir Pk ; (22)  the rendering equation (16). Therefore, in the rest of the paper,

j we consider the original FDL model unless otherwise stated.



D. Regularization Schemes Lbd

In order to keep the layer construction and calibratio s-e-e
problems in Egs. (18) and (20) easy to solve, we have use(? ®®
Tikhonov regularization. The de nition of the Tikhonov matrix ; : :

depends on the intended objective. In the most basic fori.,| ¢ ¢
classical, regularization is obtained by simply takingequal 2o
to the identity matrixl,,. This prevents the values i (i.e. ° :: :
Fourier coef cients of the disparity layers) from taking too” disparity

. . . . 4 8 2 4 0 1 2 3 4 ——Ground truth cumulative disparity distribution
hlgh values., which reduces the n0|se_, bUt also results I_n . Z"dordcrlaycrrcgularization b Z"dorderlayer regularization
loss of details. Furthermore, for the calibration problem, usir| o 1, regularization o1, regularization
thel, regularization may not accurately estimate the disparity (@) (b)
distribution of the Light Field as illustrated by the calibratiorfig]- \?v-ithE;gT;Pfr s‘?f(g’;llgosfﬂ%fgefgzl#ti |f2rréggr?i/:;?:g%fl_tiﬁgt\/g?\)g(;ﬁéelpilrlgﬂ;wd
results of Fig. 3. The sorted disparity values shown in Fig. S(b th is the 9>¥9 régular grid). (b) S%rted disparity values. The verticzgl axis
can be interpreted as an estimation of the cumulative dispariéyresents the normalized index of each of the sorted values. The blue curve
distribution. was obtained by sorting all the pixels of the ground truth disparity map in

In this section, we present two schemes referred ta8"4s order to visualize the cumulative disparity distribution.
order view regularization an@™ order layer regularization PR LCAL
which are better suited to the layer construction and t
calibration respectively.

1) 2" Order View RegularizationFor the layer construc-
tion, we want to encourage smooth variations between clo
viewpoints generated from the layers. For that purpose, at ed
frequency, we penalize the second derivative of sub-apert
images generated from the model with respect to the angu
coordinate. From the expression of sub-aperture images in
(10), the second derivative at a coordinateis given by:

normalized index

o0 0000606090
o0 000006060
o0 00000 06¢
oo 0 0060060
o 9 0 0 000006
o0 00000090
00000 000@

0 A s
-1 -0.5 0.5 1

I, regularization 2" order layer

B*Cup xq 47 wlde 2ot hy g @) (b) ©)
Bu?2 u ug Fig. 4. Central view of the Light Field “papillon' interpolated by constructing
(25) a FDL from the 4 corner views with: (83"? order view regularization, (b)

. . I, regularization, (c)2"@ order layer regularization. The bottom right part
Let us now consider a séR of angular coordinates to of each image is the error from the ground truth (magni ed 5x). The given

regularize. From Eq. (25), th2"d order view regularization PSNR is averaged over all the interpolated views. For the comparison, the
then consists in constructing a matrix where each row regularization parameter was adjusted in each case to obtain the best PSNR.
is associated to an angular coordinateP R and is de ned ) )

by 1 Wy2dc2e 21U 19!« For simplicity, we ignore the For convenience, we replace in Eqg. (19) by the scaled
constant factor 4 2 in the de nition of  since it can be Version: —7— so that the amount of regularization
accounted for in the regularization parameteintuitively, in fémains independent of the size of the integration domain in
order to apply the regularization at every coordinate in tHed- (26) (i.e. area of the portion of the camera plane covered
camera plane, one would need to de ne a matriswith an by the regqunzguon). In our |.mplementat|on of t¥¢' order .

in nite number of rows (i.e. in nite setR). Although this VIeW regularization, we consider the full camera plane_(|.e.
might seem impractical, we show in what follows that it can b P8 :8q) by makingr tend towards the in nity. In this

k

done by observing that the solution to the regularized probléi@se-  simply becomes a diagonal matrix such that:
:\ Ez. (19) only requires the knowledge of of nite size boosa xde®: (29)
First, let us take a continuous inten@l r  r{2;r{2s of Note that for! , 0, Eq. (29) gives 0, which does

sizer, instead of a discrete set. Then, each colummust be not produce any regularization. Therefore, in practice, a small
interpreted instead as a functiog : u PRw,2d,2e 2ud «!x  value is added to the diagonal elements.of . This is
Thus, each element of s given by the following inner equivalent to adding & regularization term kxk; to the

product: problem (18).
» 2 The advantage of the propos2¥ order view regularization
r Sak, X ki koY  PUQ g, puodu; over fthe ;lmpldz re_zgularlzatlon is demonstrated in Fig. 4 for
r{2 the view interpolation problem.

(26) 2) 24 Order Layer Regularization:For the calibration
4y 20 2 o ded . step, however, it is preferable to use a regularization that does
Fy d, “d, et Pl o xdy; not depend on the parametats. Otherwise, the expression
e @7) of the gradientsr d would need to take the regularization
4 24 2 term into account, which can result in more complex gradient
Pxd, ", T sincrp, - dk,d <G (28)  computations and a slower convergence of the algorithm.



Fig. 5. Top row: no padding. Bottom row: with zero-padding. From left t
right: Aperture image; Real part of the Fourier transform of the aperture ima
(up-sampled with linear interpolation for the top row for the comparison
Rendered result with magni ed details. Zero-padding removes the aliasing in
the Fourier transform of the aperture, which better preserves contrasts in the (b)

nal rendered image (best viewed zoomed in). D '

Instead, we encourage smooth variations between succes
layers by de ning as a discrete approximation of the secon
order differential operator as follows:

£

2 1 (c)
1 2 1 Fig. 6. Refocused image using 5x5 views of the Light Field "Lego Knights'
from the Stanford dataset [32]: (a) Shift and Sum method [4], (b) Our method
(30) using a square aperture covering the angular coordinates of the input 5x5
views. (c) Our method using a larger circular aperture. Angular aliasing is
1 2 1 reduced in our method by considering all the angular coordinates within the
1 2 aperture.

The 2 order layer regularization thus penalizes large differ- o )
ences between neighboring layers, which results in a mdpgreases the resolution in the spectral domain. The effect

uniform distribution of the disparity values. As shown ifPf the padding is illustrated in Fig. 5 showing that the
Fig. 3(b), the calibration using thé, regularization (i.e. resulting increased spectral domain resolution allows a better

I,) tends to nd too many disparity values close to th@reservation of the contrasts in the rendered images. Note

dominant disparity (between 0 and 0.5 in the gure) and mé’yso that f[he _spatial resplution of th_e aperture image _can_be
underestimate other parts of the light eld (e.g. with dispariti€@ken arbitrarily large without affecting the aperture size in
close to -1). The2" order layer regularization attenuatedh® rende_red/\|mage. In practice, we contr/s)l the aperture size
that effect by encouraging a more uniform distribution. Not®Y replacing pl xps  deqqin Eq. (16) by "' xps  daq
however, that for the layer construction, smoothness along i & scaling factorf . For example, taking 0 simulates
layers is not desirable and produces artifacts along the ed@eiuP-aperture image. On the other hand, taking a large factor
in the images rendered from the FDL model as shown in Fipy. Produces a shallow depth of eld effect without affecting

4(c). e complexity of the method.
VI. LIGHT FIELD RENDERING B. Visual Results and Discussion
A. Implementation In Fig. 6, we show a comparison of our approach with the

Knowing the layers and their disparities, any view witltonventional Shift and Sum refocusing method [4]. Thanks to
arbitrary aperture and focus can be rendered in the Fourike regularization used in the layer construction (see Section
domain by applying the FDL decomposition equation (16) andD), the light eld is extended angularly, which allows
by computing the inverse Fourier transform. The interpretatisandering images with reduced angular aliasing as in Fig. 6(b).
in the spatial domain is that each layer is shifted (i.e. multAs shown in Fig. 6(c), the aperture can also be taken larger
plied bye 2Y od'x in the Fourier domain) and ltered (i.e. than the baseline of the input Light Field from which the FDL
multiplied by “p «ps  dkqqin the Fourier domain). model is constructed. The possibility to change the shape of

However, except for specic aperture shapes (e.g. squdle aperture also gives better control over the bokeh (i.e. the
or dirac), the Fourier transform® of the aperture function quality of the out-of-focus regions).
has no analytical expression. Hence, in our implementation,Another important and often overlooked factor in uencing
an approximation is obtained by drawing the aperture shatie bokeh is the color space of the input image data. The
as an image, and by taking its discrete Fourier transformefocusing Egs. (1) and (3) assume that the Light Field rays
A linear interpolation is used to determingp yps  dcgqq Lpx;y;u;vq are proportional to luminance data. However,
from the discrete frequency samples. In order to increasBages are traditionally represented in a non-linear color space
the accuracy of this approximation, the aperture image (8.g. gamma corrected) in order to account for the non-linearity
zero-padded before computing its Fourier transform, whiadf the human visual system as well as typical displays.
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Fig. 8. Reconstruction PSNR (average over views) for different Light Fields
with respect to the number of layers used in the FDL model. For the Light
Field "Lego Knights', two different results are shown using either the full

17x17 views or only the 5x5 central views.

In addition to the spatial resolution, another important
factor to consider for the complexity is the number of layers
b) used. In order to analyse the number of layers needed for
Fig. 7. Rendered result when the processing is performed in (a) gamP}Hr model, we have performEd an experiment where nght

corrected space, (b) linear space. Linear space processing results in brighi@ld sub-aperture images are used for FDL calibration and
out-of-focus regions where the bokeh shape (i.e. aperture shape shown indfgstruction with varying numbers of layers. The input images

top left corner) appears more clearly. However, it also increases the artifa; - . . .

(see details in the green rectangles). 1% then _reconstructed via FDL renderl_ng. ngeral Light Flglds
from various datasets were tested including natural Light

Fields captured with a rst generation Lytro camera (" Totoro

This non-linearity affects the appearance of the refocus terfall' [33]), a Lytro lllum camera (‘Fruits' and “Toys'

images. More realistic bokeh can be achieved by applyi 4]), a Raytrix R8 camera (rst frame of the Light Field

inverse gamma correction to the input images before the la BhessPieces' [35]), a traditional camera moving on a gantry
construction, and by applying gamma correction back after : : ’ o ; N
the rendering step, as shown in Fig. 7. One limitation of th Lego Knights” [32]), and synthetic Light Fields (‘papilion

.~ and “buddha' [31]). Fig. 8 presents the average Peak Signal

linear color d not take the non-linearity of hum the PSNR curves show that 15 to 30 layers are generally
a eat'co of Ispape 0es to axe te on-linearity o huma cient, and using more layers does not signi cantly change
perception ot fuminance Into account. L ., the results. Light Fields with a large baseline, and thus large
. A demonstration of our rgndenng application is aVa'l"’lblﬁ'fferences between extreme viewpoints (e.g. Lego 5x5, Lego
in the supplementary r‘r_1ater|.als. It shows that our approa&szﬂ)’ typically require more layers than smaller baseline
can be used for contrpllmg smultaneous]y the vyewpomt, tr]ﬁght Fields. However a very large range of viewpoints also
aperture shape and size, and the focus in real-time. implies large occlusions, which results in a signi cant loss
when reconstructing the sub-aperture images, as observed with

VII. COMPLEXITY Lego 5x5 and Lego 17x17. This makes the analysis dif cult
In this section, we analyse the complexity of the differerf®r very large baseline Light Fields which may still bene t
processing steps proposed in our approach. from more than 30 layers in the ideal non-occluded case. Note

First, regarding the spatial resolution, our implementatidhat for the small baseline Light Fields captured with Lytro
takes advantage of the symmetry property of the Fouriggmeras, the relatively low PSNR is due to inaccuracies in the
transform for real signals. Given a real valued functgprits input data (e.g. noise, color differences between views) which
Fourier transformg is such thatgp ! ¢ @p g Hence, for are reduced in our reconstruction. More details and results on
the layer construction and the rendering algorithms, only halye reduction of noise and color inconsistencies are presented
of the discrete spectrum must be computed. The remainifigsection VIII-B.
frequencies are directly obtained by copying and taking theThe computing times for the different processing steps
complex conjugate of the rst half. This symmetry property isire presented in Table Il for all the Light Fields in Fig. 8.
also used in the calibration step by selecting random frequélie table also provides the number of iterations needed for
cies only in one half of the spectrum for the stochastic gradiethie calibration since it has a large impact on the computing
descent. Regarding memory requirements, using only halftohe. For this experiment, 30 layers were used although
the frequencies in the Fourier representation compensatesldss layers would be suf cient for some of the Light Fields
fact that complex numbers require twice as much memory @sg. see "ChessPieces’, “Toys', "Totoro Waterfall' in Fig. 8).
real numbers. The processing times were measured using an Intel Core i7-



TABLE I TABLE Il
COMPUTING TIMES FOR OURMATLAB IMPLEMENTATION USING AN INTEL VIEW INTERPOLATION RESULTS FOR THELIGHT FIELD “PAPILLON'. THE

CORE I7-7700 CPUAND AN NVIDIA GEFORCEGTX 1080 GPU. BR RESULTS GIVEN ARE THE AVERAGEPSNROF THE INTERPOLATED VIEWS
EVERY LIGHT FIELD 30 LAYERS WERE USED AND THE TOTAL RECONSTRUCTION TIME(INCLUDING CALIBRATION FOR
. ) . Calibration Layer THE FDL METHOD).
Input Light Field (resolution) time (#iter) | construction Render Method n Input views 2x2 3x3 5x5 border
Lego Knights (1024x1024x5x5) | 9.2 s (184) 22s 35 ms 348 dB | 408 dB | 41.8dB | 37.2 dB
Lego Knights (1024x1024x17x17) 56 s (403)| 7.2s | 35ms Shearlet[20] 143mn | 157 mn | 185 mn | 105 mn
Chess Piece$1920x1080x5x5) 5.8 s (90) 43 s 53 ms 36.8dB | 409dB | 429dB | 43.1 dB
Fruits (625x434x9x9) 51s(70)| 09s | 12ms FDL 545 78's 8.9 s 8.8s
Toys (625x434x9x9) 6.2 s (91) 09 s 11 ms 355dB | 41.4dB | 42.6 dB | 40.1 dB
Totoro Waterrall (379x379x7x7) | 3.85(72) | 04s 7ms Shearlet(full)+FDL 143 mn | 157 mn | 185 mn | 105 mn
papillon (768x768x9x9) 7.8 s (109) 19s 20 ms 384 dB | 42.0dB | 42.7dB
buddha (768x768x9x9) 81s(113) 19s | 19ms Shearlet(borden+FDL | "53| 53mn | 53 mn X

o epipolar images of the Light Field in the shearlet domain.
7700 CPU and a Nvidia GeForce GTX 1080 GPU. All thg-or the comparison, the synthetic Light Field “papillon’ was

proposed steps were implemented in Matlab using the parallgled with several sampling con gurations of the input views
computing toolbox in order to process the different frequencigg jllustrated in Fig. 9. The average PSNR of the interpolated
in parallel on the GPU. views and the computation times are shown in Table Ill. The
Although the processing time for the calibration and layaable also includes the results for two schemes combining the
construction steps is affected by the number of input viewsDL and the Shearlet approaches. In the “Shearlet(full)+FDL',
(i.e. angular resolution), the rendering time only depends @fe full Light Field is reconstructed with [20]. Then, a FDL
the Spatial resolution and the number of Iayers. For eXalrodel is Computed from the input views and the previ0u3|y
ple, the same rendering time is obtained for "Lego Knightgeconstructed intermediate views. The nal reconstruction is
using either 5x5 or 17x17 input views. This is particularlpbtained with FDL rendering. The “Shearlet(border)+FDL'
advantageous when rendering images with a large aperture $iggeme is similar, but only the views at the periphery of
that are traditionally obtained by averaging a large numbgfe Light Field are interpolated using [20]. Our experiments
of sub-aperture images with the Shift and Sum algorith®ith the Shearlet method were performed using the author's
[4]. Note that similarly to our method, the Fourier Slic@mplementation of the epipolar image reconstruction with 100
refocusing algorithm [5] rst transforms the Light Field in aniterations. The reconstruction of the full Light Field was

intermediate representation in order to perform fast I’efOCUSirmarformed by scanning the epipolar images in the “direct’ order
In that method the refocusing complexity does not depend @8 detailed in [20].

the number of input views. However, since the intermediate The results in Table Il show that our FDL view interpola-
representation is the 4D Fourier transform of the nght Fiel(ﬁon performs particu|ar|y well in the “border' con guration_
the memory requirement remains proportional to the numbghe Shearlet method, on the other hand, does not fully take
of views. Furthermore, it does not allow changing the apertuggivantage of this con guration as it processes each epipolar

or the viewpoint. image independently using only the input views located on the
corresponding row or column in the Light Field. In the other
VIIl. DIRECT APPLICATIONS con gurations, a higher PSNR is also observed with the FDL

method. However, when the input Light Field is too sparse
(e.g. 2x2), it produces ringing artifacts as shown in Fig. 10. In

As shown in Fig. 6, our approach reduces the angulgiis situation, the Shearlet method better preserves the edges
aliasing and allows extending the aperture size for an inpian our FDL method, but it tends to blur the ne details and
Light Field consisting of a sparse set of sub-aperture imagésiroduce color distortions, which explains the lower PSNR.
Equivalently, the layer construction can be seen as a view int&he best strategy for such sparse inputs is then to combine the
polation and extrapolation method since sub-aperture image® methods with the “Shearlet(border)+FDL' scheme which
with arbitrary angular coordinates can be rendered from tdees not produce ringing artifacts. In comparison with the
FDL model. Shearlet method alone, this scheme better keeps the details

1) Comparison and Combination with Sparsity Based Apnd color consistency as shown in Fig. 10. It is also signi -
proach: For evaluating the view interpolation capability of thecantly faster since the reconstruction of the interior views is
method, we have compared our results with the recent methsstformed using our FDL approach which requires a negligible
of Vagharshakyan et al. [20] that enforces the sparsity of teemputing time compared to the Shearlet method.

2) Comparison with Deep Learning Approachésfe have
additionally performed comparisons with three state-of-the art
deep learning approaches [12], [14], [16]. The method of
Kalantari et al. [12] uses two Convolutional Neural Networks
(CNN) where the rst one determines a disparity map, while
the second one re nes the disparity compensated views. Yeung

N CY) ) _ (c) _ (d) :
Fig. 9. Tested sampling con gurations of the input views (shown in red) iget al. [16] have proposed a CNN de ning an end-to-end
the view interpolation: (a) "2x2', (b) "3x3', (c) "5x5', (d) "border". mapping between sparse input views and the dense Light

A. View Interpolation and Extrapolation
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@) (b) (© (d)
Fig. 10. Interpolation of the central view from the 4 corner views of the Light Field “papillon’ (i.e. 2x2 con guration) using: (a) only FDL, (b) only Shearlet
[20], (c) “Shearlet(full)+FDL', (d) “Shearlet(border)+FDL'. The bottom images show the residual computed with the ground truth central view (magni ed 5x).
A video of the results is available in the supplementary materials.

: ; TABLE IV
Field. Finally, the method of Wu et al. performs super- VIEW INTERPOLATION RESULTS FOR NATURALLIGHT FIELDS. THE

resolution of the epipolar images. For the comparison, th@suLts civEN ARE THE AVERAGEPSNROF THE INTERPOLATED VIEWS

natural Light Fields "Fruits' and "Toys' [34] as well as "Friends average
! N ! : : Fruits | Toys | Friends 1| Vespa ;

1' and "Vespa' [36] were used with gamma correction. They runtime

were captured with a Lytro lllum camera, similarly to the Yeung |, oqaall 331 | 329 375 34.4 40s

Light Fields used for the training in the tested deep learpS: al [1§]
Kalantari | 2x2N 8x8|| 34.2 33.2 37.1 34.4 [[ 10mn30s

ing approaches. The PSNR results and average runtimes &{€, |12 [3xaN7x7(| 317 | 321 | 364 | 34.0 7
presented in Table IV for the con gurations with 2X2 INPUF—— 7~ T2xaN 8xa|| 283 | 320 | 366 | 324 Tomn
and 8x8 output views (242 8x8) and with 3x3 input and |et al. [14] [3x3N 7x7|[ 35.3 | 35.7 39.4 37.7 || 13mn30s
7x7 output views (3xR 7x7). Note that for the method of FoL | 2X2N8x8][ 324 [ 325 | 368 | 321 6s
Yeung et al. [16], the available CNN model only applies t 33N 7x7]| 359 | 353 | 400 | 36.9 6s
the 2xAN 8x8 con guration. Although the method of Kalantari

et al. [12] was designed for 2x2 input views, we have used

it in the 3x& 7x7 con guration by treating the quadrants of

the Light Field separately. Furthermore, in [12] and [16], the

output Light Field is cropped in the spatial dimensions. For

the comparison, the same crop (12 pixels on each side) was

applied to compute all the PSNR values in Table IV.

=

The CNNs used in [12] and [16] are particularly ef cient for
the 2xN 8x8 con guration for which they were designed and
trained. In this case, they obtain better results than our FDL
approach which is penalized by ringing artifacts, similarly to
the results shown in Fig. 10 (a). However, the performances of
Kalantari et al's method drop in the 3X37x7 con guration, (a) (b)

indicatina th he m | learned for 2x2 in view nbg@- 11. Interpolated view (5,5) of the Light Field “Vespa' from the
dicat g that the odel learned fo put views does §(|)€1 guration 3x3N 7x7: (@) Wu et al. (b) FDL. Our FDL method produces

generalize well to_ more de_nse inputs. Ou_r FDL m(_)del,_ on t_iﬂﬁ)re detailed results (see red boxes). However, textures of occluded regions
other hand, provides signi cantly better interpolation in thi$ecome apparent on the occluding objects (see green boxes).

case thanks to the higher density of input views, leading to a

better conditioning of the FDL construction problem. While Our PSNR results are more comparable to those of Wu
Yeung et al. have also reported in [16] high quality resulst al. [14]. Visual comparisons in Fig. 11 additionally re-
for the 3x3N 7x7 scenario, an adapted version of their modekals that our method better preserves the details. However,
must be designed and trained for each con guration. highly textured occluded areas become apparent on the fore-
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TABLE V
DENOISING RESULTS FOR THELIGHT FIELD "TAROT' USING 11Xx11INPUT

VIEWS AND NOISE WITH STANDARD DEVIATION 10 AND 50.
10 50 average
PSNR [ SSIM | PSNR | SSIM runtime
noisy input 28.1 | 0.787 | 14.2 | 0.283
LFBM5D [38] 39.3 0.983 | 32.7 0.937 5h30mn
HF4D [29] 31.2 0.888 | 22.3 0.603 40s
FDL (original) 32.0 | 0945 | 26.6 | 0.785 1mn30s
FDL (relaxed) 33.4 0.946 | 26.1 0.760 2mnl5s

(a) (b)
Fig. 12. Simultaneous denoising and color correction of the Light Field
“TotoroWaterfall' (captured with a Lytro camera): (a) Original (b) Processed
with the FDL method. The top image corresponds to a view on the side of
the Light Field. Epipolar images corresponding to the horizontal red line are
shown on the bottom to visualize the color consistency between views.

ground, making the borders of occluding objects appear semi-
transparent. Note also that for the tested Light Fields and
the two con gurations 2xR 8x8 and 3x8! 7x7, the average
computing time of [14] was about 16 minutes against only 6
seconds for our method (including the calibration step).

B. Denoising and Other Filtering Effects

Another direct application of our FDL construction al-

gorithm is the Light Field denoising problem. Denoising

is naturally obtained by constructing a FDL model from a

Light Field, and by rendering images using the same angular

coordinates as the input sub-aperture images. The noise is

Itered in this approach thanks to the model de nition that

enforces the Light Field dimensionality gap prior [21] (Segig. 14. Denoising results for the Light Field “Tarot'. A view on the corner

Section IV-A). Further noise reduction is also allowed byf the Light Field is shown. For the test, the Light Field was corrupted by

the proposed regularization that better ensures consistefRyFsian noise with standard deviation 50.

between views. Note that for the same reasons, the method also

ensures color and illumination consistency along the angularSimilarly, by ensuring consistency between multiple views,

dimensions. Hence it can serve simultaneously as a denoisihg FDL model and its regularization act as a spatial anti-

and color correction method for Light Fields with variationgliasing Iter in the case of spatially aliased Light Fields

of color and illumination between the sub-aperture images. (€ Fig. 13). This situation typically arises with Light Fields

practice, this is particularly useful for Light Fields capturegaptured with lenslet-based plenoptic cameras because of the

with plenoptic cameras (e.g. Lytro), as shown in gure 12. low lenslet resolution. It has been shown in [37] that such
Light Fields are spatially non-bandlimited and that despite
the low spatial sampling, higher frequencies than the Nyquist
frequency can be recovered in theory. However, we construct
the layers at the same spatial resolution as the input views.
Therefore, while an anti-aliasing effect is produced, these
higher frequencies are not recovered in our method. Construct-
ing higher resolution layers to fully exploit the 4D Light Field
sampling would allow Light Field super-resolution and is left
for future work.

(@) (b)

Fig. 13. Spatial anti-aliasing effect of the FDL model: (a) Original central FOI’. Light F|e|d§ W”h a wide baseline, our progessmg may
view (detail of the Light Field “papillon’), (b) Reconstructed view from the@lSO introduce distortions due to the assumptions of non-

FDL model. The effect is particularly visible on the butter y's antennas. occluded Lambertian Light Field. In this case, better results
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can be obtained using the relaxed version of the FDL modmpture of Light Fields by removing the need for the different
presented in Section V-C. Denoising results are presentedviawpoints to be regularly sampled on a grid.
Fig. 14 for the Light Field "Tarot' that exhibits strong non- However, despite this exibility, we have shown that the
Lambertian effects. The re ections in the crystal ball are bettefuality of the FDL model produced with our method depends
preserved by the relaxed FDL model than the original one. Fer the input con guration. For example, while very accurate
the comparison, the results obtained with the LFBM5D [38]iew interpolation is obtained from the sub-aperture images
and the Hyperfan 4D lter (HFAD) [29] are also shown. Thdocated on the borders of the Light Field, a too sparse
corresponding PSNR and SSIM results are given in Table Viewpoint sampling may lead to ringing artifacts. Furthermore,
The best results were obtained with the LFBM5D methofdr Light Fields with a large baseline, the FDL model is more
that completely removes the noise while preserving most liely to produce visible errors due to large occlusion areas
the details in the image. However, this method performs heawy non-Lambertian effects. In the paper, we have partially
processing and typically requires several hours for a Lightidressed these limitations. In the case of a too sparse view-
Field. The HF4D method is faster since it simply consists ipoint sampling, a combination of our view interpolation with
multiplying the 4D Fourier Transform of the Light Field bya state of the art approach was shown to outperform either
a 4D lter. This hyperfan lIter is designed to attenuate theof the two methods taken individually. A better handling of
frequencies outside of the theoretical region of support of theclusions and non-Lambertian effects was also obtained, for
Light Field in the 4D Fourier domain, under the assumption die denoising application, using a relaxed version of the model.
a non-occluded Lambertian scene. With comparable processin the aim of further extending the applicability of the FDL
ing times, our FDL approach removes more noise thanks to tgproach, future work may focus on generalizing the relaxed
linear optimization used instead of the direct lItering in thenodel to view interpolation, or including an additional prior
HF4D method. Furthermore, our model can be more easiifectly in the layer construction (e.g. sparsity in the Shearlet
generalized for the case of scenes with occlusions or nafbmain similarly to [20]) to better cope with very sparse or
Lambertian surfaces, as shown with the proposed relaxatiogery noisy Light Fields. A generalization of the calibration to
Note however that for a high level of noise (i.e. 50), the wide aperture images would also be a valuable tool to facilitate
relaxation of the FDL model results in lower objective scorahe creation of Light Fields from less conventional input data
despite the better preservation of the non-Lambertian surfasiech as focal stacks.
observed in Fig. 14. The reason is that the relaxed model also
preserves more noise from the input data. Hence the choice of
the original or the relaxed version of the model is a tradeoff APPENDIXA
between the noise level and the amount of occlusions or non- PROOF OF SPARSITY PRIOR

Lambertian effects. . . .
The spatial regions ¢ are de ned for the central view at

u 0. The corresponding regions; can also be de ned for

IX. CONCLUSION AND PERPECTIVES any viewu by | t XxPR|x ud¢P yu

We have presented a new representation for Light FieldsThe expression in Eq. (4) is then formulated as:
called Fourier Disparity Layers. The light information in the
scene is decomposed into several layers, each correspondi@ P Vinw@piuqP ¢ R;LpGug Lpx udc;0g (31)
to a depth plane parameterized by a disparity value. The ] ) ] ]
decomposition step is formulated in the Fourier domain using!n the assumption of a non-occluded Light Field, the regions
a simple linear least square problem per-frequency, hence are such tha@ PR;x PRz ) k» Lpgug 0, and for
allowing fast processing with GPU parallelization. We havgny xed u PR, the sets | are pairwise disjoint. Hence, the
demonstrated the advantages of the FDL representation f@urier Transform of the Light Field is given by:
several Light Field processing tasks. Those include real time v,
rendering, view interpolation, denoising, as well as a calibra- . 2 pd o Uy
tion step that determines the angular coordinates of the inputp xi!ud © L pe ugrixdu

sub-aperture images along with an optimal set of disparity » g R > (32)
values for each layer. 2iu 2i x!
. . . e <% e 7 xLpgugdx du:
The computational efciency of our layer construction 3 ‘ u pe ucd

method coupled with its exibility regarding the type of input

images opens perspectives for an even larger range of applidaing Eqg. (31), and by change of variable we obtain:
tions. For example, our supplementary video presents results of

FDL model construction from a focal stack, where the camereﬁﬂ x> ud

aperture and the focus parameter of each image are known. > s Jiu o » pixd

More generally, the method could even take advantage of a e 9% v e 9 *Lp  udy;O0cpx du
hybrid capture system taking images with different apertures, »8 ko K

focusing depth, and varying positions on the camera plane. o 2iul e 2 P udd x| pe odx du:

Furthermore, since our approach does not require a specic 4 " .
pattern of the input view positions, it can greatly simplify the (33)



By re-arranging the terms the result is: [20]
LR ;! g [21]
» 8 »
s e 2iu ply di!x qdu e 2ix! Lp(, Oqjx 22]
k 8 k
’ Pu di! xq,—\kFi xq -
K [23]
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