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A Fourier Disparity Layer representation for Light

Fields
Mikael Le Pendu, Christine Guillemot, and Aljosa Smolic

Abstract—In this paper, we present a new Light Field rep-
resentation for efficient Light Field processing and rendering
called Fourier Disparity Layers (FDL). The proposed FDL rep-
resentation samples the Light Field in the depth (or equivalently
the disparity) dimension by decomposing the scene as a discrete
sum of layers. The layers can be constructed from various types
of Light Field inputs including a set of sub-aperture images, a
focal stack, or even a combination of both. From our derivations
in the Fourier domain, the layers are simply obtained by a
regularized least square regression performed independently at
each spatial frequency, which is efficiently parallelized in a GPU
implementation. Our model is also used to derive a gradient
descent based calibration step that estimates the input view
positions and an optimal set of disparity values required for
the layer construction. Once the layers are known, they can be
simply shifted and filtered to produce different viewpoints of
the scene while controlling the focus and simulating a camera
aperture of arbitrary shape and size. Our implementation in the
Fourier domain allows real time Light Field rendering. Finally,
direct applications such as view interpolation or extrapolation
and denoising are presented and evaluated.

Index Terms—Light Fields, Fourier domain, rendering, refo-
cusing, view interpolation, denoising.

I. INTRODUCTION

Light Fields are commonly represented as 4 dimensional

functions with 2 spatial and 2 angular dimensions [1], [2].

They can be seen as 2D arrays of images (called sub-aperture

images), each having an unlimited depth of field, and differing

from their neighbour images only by a slight shift of the

view angle. The sampling in the angular dimensions is key

in Light Field imaging [3]. In particular, densely sampled

Light Fields make it possible to directly render images with

shallow depth of field while controlling the focus depth. Such

rendering, often referred to as Light Field refocusing, does

not require knowledge of the scene’s geometry. It is usually

performed either by shifting and averaging the sub-aperture

images [4] or by selecting a 2D slice in the 4D Fourier

domain [5]. However, a dense angular sampling comes at

the expense of very high requirements in terms of capture,

storage, processing power and memory. A too sparse angular

sampling, on the other hand, does not allow for a smooth

transition between viewpoints and causes angular aliasing in

the refocused images, characterized by sharp structures in

the out of focus regions. The importance of a dense angular

sampling is clearly shown by the vast literature on viewpoint

interpolation. Several approaches exist including depth image

This project has been supported in part by the Science Foundation Ireland
(SFI) under the Grant Number 15/RP/2776 and in part by the EU H2020
Research and Innovation Programme under grant agreement No 694122 (ERC
advanced grant CLIM).

Fig. 1. Fourier Disparity Layer representation. For the visualization, the layers
are shown in the spatial domain (i.e. after inverse Fourier Transform). The
magnitude spectrum of each layer is also shown in the red boxes. Note that
the FDL representation differs visually from a focal stack: the out-of-focus
regions tend to disappear while the regions in focus have enhanced contrasts.

based rendering techniques [6]–[11], deep learning methods

either exploiting a depth map estimation [12], [13] or not

[14]–[16], and approaches leveraging sparsity priors of the

Light Field data in a transformed domain [17]–[20]. However,

although viewpoint interpolation greatly simplifies the capture

of dense Light Fields, it also increases the amount of data to

store and process for the final rendering application.

Alternatively, Light Fields can be represented as a focal

stack, that is, a set of shallow depth of field images (e.g.

photos taken with a wide aperture) with different focusing

depths. This representation has the advantage of allowing

an unlimited angular density with few images because the

sampling is performed on the depth dimension instead of

2 angular dimensions. However, for rendering tasks such as

simulating a different camera aperture size or shape, or a

change of viewpoint, the common approach is to first convert

the focal stack into the 4D representation. For instance, Levin

and Durand [21] retrieve sub-aperture images by the deconvo-

lution of shifted and averaged focal stack images. A similar

deconvolution technique is used in [22] to first synthesize the

4D Light Field from a focal stack in order to render images

with arbitrary aperture shapes. More recent methods have also

been proposed to reconstruct the 4D Light Field from a focal

stack either in the spatial domain using depth from focus [23],

or via optimization in the Fourier domain [24], [25].

The main motivation of this work is to simplify the handling

of Light Fields through the definition of a compact represen-

tation which, unlike focal stacks, can be directly used for

any Light Field rendering task. In this aim, we propose the

Fourier Disparity Layer (FDL) representation illustrated in Fig.

1. It can be easily constructed either from a 4D Light Field,

a focal stack, or even a hybrid Light Field combining sub-

aperture and wide aperture images with varying parameters

(i.e. focusing depth, aperture, point of view). Given the 2D

Fourier transform of each input image with their parameters

(i.e. angular coordinates, aperture, focus), the FDL model
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is constructed using linear optimization. For each frequency

component, a linear least squares problem is solved to deter-

mine the corresponding Fourier coefficients of the different

layers, each layer being associated to a given disparity value.

The layers can then be directly used for real time rendering.

For instance, sub-aperture images are obtained by shifting

the layers proportionally to their associated disparity value

and by averaging them. This is directly implemented in the

Fourier domain as a simple linear combination with frequency-

dependent coefficients. More general rendering with arbitrary

point of view, aperture shape and size, and focusing depth is

performed with the same computational complexity without

the need to first reconstruct the 4D Light Field.

In the case where the input is a set of sub-aperture images,

we propose a gradient descent based calibration method to

determine their angular coordinates as well as the optimal

set of disparity values. The formulation of the optimization

problems for the calibration and the layer construction are

closely related. Nevertheless, we define two regularization

schemes with different properties to better suit each situation.

Additionally, we demonstrate the effectiveness of our ap-

proach for several direct applications. First, when the input

is a sparse set of sub-aperture images, view interpolation

and extrapolation is obtained by constructing the FDL rep-

resentation and by rendering views at intermediate angular

coordinates with an infinitely small aperture. In a second

application, the same viewpoints as the input are rendered

to produce a denoised result. For this use case, we present

a possible extension of the model where the shift applied to

each layer is not constrained to be proportional to the angular

coordinates of the view to reconstruct. The relaxed model

allows a more accurate representation of occlusions and non-

Lambertian effects in the scene.

Since the computational complexity is a key aspect mo-

tivating the need for a new Light Field representation, our

implementation makes efficient use of the GPU at every step

of the processing chain (i.e. calibration, layer construction,

rendering). The proposed algorithms are built upon simple

linear algebra operations performed independently at each

frequency component, which makes our approach particularly

suitable for GPU parallelization.

In summary, the contributions are:

‚ Definition of the Fourier Disparity Layer representation

and its construction from other Light Field representa-

tions (e.g. sub-aperture images, focal stack, combination

of focal stack images and sub-aperture images).

‚ Calibration method jointly determining the input view

positions and disparity values of the layers.

‚ Fast and advanced Light Field rendering from the FDL

representation with simultaneous control over the view-

point, aperture size, aperture shape and focusing depth.

‚ Analysis of other application scenarios: view interpola-

tion and denoising.

II. RELATED WORK

Related Light Field representations have been used in

the design of several Light Field displays [26]–[28]. These

displays reproduce the Light Field using a stack of light

attenuating LCD layers placed in front of a backlight. Thanks

to the distance separating the LCD panels in the display, the

image perceived depends on the observer’s position and is pro-

portional to the product of the layers. This layer representation

has similarities with the one presented in this paper, and it can

be constructed either from the Light Field views [26], [27] or

from a focal stack [28]. The main difference however, is that,

because of the physics of the light attenuating LCD layers,

the sub-aperture images of the Light Field are reconstructed

as a product of the layers’ pixels instead of a sum. Hardware

limitations also impose constraints on the layer representation.

For instance, the number of layers is generally small (e.g. 3 to

5), which is often insufficient to accurately represent the whole

Light Field. Furthermore, the layers must only have positive

pixel values in order to be displayed on the LCD panels. This

constraint is not required in our model, which allows us to

efficiently construct the layers in the Fourier domain.

Similarly to the FDL method proposed in this paper, Alonso

et al. [25] construct layers by an optimization in the Fourier

domain. However, their method is limited to a focal stack

input. In this configuration, the problem is well conditioned

because the input images already contain dense angular infor-

mation and each constructed layer is associated to the focusing

depth of one of the focal stack images. Hence, no regulariza-

tion scheme was considered for this application. The method

we propose is more generic as it can also construct the layers

from sub-aperture images. Therefore, specific regularization

strategies are studied, which allows us to address a much larger

range of applications including calibration, view interpolation,

denoising, etc.

Finally, the proposed FDL representation directly relates

to the dimensionality gap Light Field prior described by

Levin and Durand [21]. It states that the support of the

Light Field data in the 4D Fourier domain is a 3D manifold

which was later characterized as a hypercone in [29]. By

additionally considering the limited depth range of a scene,

Dansereau et al. [29] determined that the frequency-domain

support of the Light Field forms a hyperfan. They define this

shape as the intersection of the hypercone with a dual fan

previously described in [30]. In this paper, we derive the FDL

representation from the dimensionality gap prior assuming a

discrete set of depths instead of a continuous range. For the

discrete depth case, we show formally in Section IV-A that this

prior is itself derived from the assumption of a non-occluded

Lambertian scene. This is a limitation for any method directly

enforcing the dimensionality gap prior. For instance, as ob-

served in [21], [29], in the reconstructed sub-aperture images,

occluding objects may appear transparent near the occlusion

boundaries. However, semi-transparent objects and reflections

on flat surfaces are accurately reproduced, which is particularly

challenging for depth image based rendering methods. We also

present in Section V-C a possible generalization of our layer

model to allow a better representation of other non-Lambertian

effects and occlusions.
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Fig. 2. Two-plane parameterization. The focal plane px, yq is parallel to the
camera plane pu, vq and located at a distance z0.

III. LIGHT FIELD NOTATIONS

Let us first consider the 4D representation of Light Fields

in [1] and Lumigraph in [2] parameterized with two parallel

planes, as illustrated in Fig. 2. The 4D representation describes

the radiance along rays by a function Lpx, y, u, vq where

the pairs px, yq and pu, vq respectively represent spatial and

angular coordinates. For simplicity of notation, we consider

a 2D Light Field Lpx, uq with one spatial dimension x and

one angular dimension u, but the generalization to a 4D Light

Field Lpx, y, u, vq is straightforward.

In this paper, we use the notion of disparity instead of depth.

Given the depth z0 of the focal plane in Fig. 2, a depth z can

be directly converted into a disparity d with d “ z0´z
z

(i.e.

objects at depth z0 from the camera plane have zero disparity).

Refocusing the Light Field then consists in defining a new

Light Field L1px, uq “ Lpx´ us, uq. The refocus parameter s

is defined such that the regions of disparity d “ s in the Light

Field L, have a disparity equal to zero in the Light Field L1.

A refocused image, noted Bs, is then formed by refocusing

the Light Field with parameter s and integrating the light rays

over the angular dimension as described in [4]:

Bspxq “

ż

R

Lpx´ us, uqψpuqdu. (1)

where ψpuq represents the aperture of the imaging system. In

the case where Bs is captured by a camera with an aperture

area A (typically a disk), then ψ is defined by:

ψpuq “

"
1 if u P A
0 otherwise.

(2)

In this paper, we use a more general version of Eq. (1)

where the image can be observed at any position u0 on the

camera plane with any given aperture ψ :

Bs
u0

pxq “

ż

R

Lpx´ us, u0 ` uqψpuqdu. (3)

Note that when the aperture area is infinitely small, the

function ψ is equal to the dirac delta function δ. In this case,

the image formed by Eq. (3) is the sub-aperture image noted

Lu0
and defined by Lu0

pxq “ Lpx, u0q.

The different notations used in the article are summarized

in Table I.

TABLE I
TABLE OF NOTATION

Symbols Description

Lpx, uq
Light Field with spatial coordinate x and angular

coordinate u.

ωx, ωu Respectively spatial and angular frequencies.

Lu0
Sub-aperture image at position u0 (Lu0

pxq “ Lpx, u0q).

Bs
u0

Image with refocus parameter s and position u0.

ψ Aperture function.

u0 Angular coordinate of the view to reconstruct.

ul Angular coordinate of a known input view.

dk Disparity value in the Light Field.

Ωu
k

Region of disparity dk in an image of view position u.

δ Dirac delta function

f̂ Fourier transform of a function f .

A
J Transpose of the matrix A.

A Complex conjugate of A (without transpose).

A
˚ Conjugate transpose of A (A˚ “ AJ).

Aj,k Element of A on the jth row and kth column.

Ak kth column of matrix A.

xk kth element of vector x.

IV. FOURIER DISPARITY LAYER REPRESENTATION

A. Light Field Prior and FDL Representation

For the derivations, we assume that the scene is Lambertian,

without occlusion, and can be divided into n spatial regions

Ωk with constant disparity dk. Formally, this can be written:

@k P v1, nw,@px, uq P Ωk ˆ R, Lpx´ udk, uq “ Lpx, 0q. (4)

Here, the spatial regions Ωk are defined for the central view

at u “ 0. From this assumption, we prove in Appendix A that

the Fourier transform of the Light Field can be decomposed

as follows:

L̂pωx, ωuq “
ÿ

k

δpωu ´ dkωxqL̂kpωxq, (5)

where L̂k is defined by

L̂kpωxq “

ż

Ωk

e´2iπxωxLpx, 0qdx. (6)

Each function L̂k can be interpreted as the Fourier transform

of the central view only considering the region Ωk of disparity

dk. Hence, we call these functions Fourier Disparity Layers

(FDL). One can note from Eq. (5) that the Light Field infor-

mation is entirely contained in the Fourier Disparity Layers

and their associated disparity values dk. We will show that

the layers L̂k can be constructed either from sub-aperture or

wide aperture images without knowing the regions Ωk. In other

words, our method does not require a disparity map. However,

the disparity values dk are necessary. Hence, a method for

estimating these values is also presented in Section V-B.

Another interpretation of Eq. (5) is that the Light Field

is sparse in the Fourier domain and the non-zero values

are located at frequencies such that ωu “ dkωx for each

disparity value dk of the Light Field. This is similar to the

Light Field prior referred to as dimensionality gap prior in

[21], and resulting in the definition of the hyperfan filter in
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[29]. However, these previous works consider a continuous

disparity range, which does not allow for a practical layer

representation, since it would result in an infinite number of

layers.

B. FDL Decomposition of Images

Sub-aperture images: Here, we derive the relationship

between the FDL representation of the Light Field and the

Fourier Transform L̂u0
of a sub-aperture image Lu0

. Note

that in L̂u0
, the Fourier Transform only applies to the spatial

dimension. Hence, L̂u0
is obtained from the Light Field’s

spectrum L̂ by applying the inverse Fourier transform in the

angular dimension as follows:

L̂u0
pωxq “

ż `8

´8

e`2iπu0ωuL̂pωx, ωuqdωu. (7)

Using the FDL decomposition of L̂pωx, ωuq from Eq. (5),

the transformed sub-aperture image can be directly derived:

L̂u0
pωxq (8)

“
ÿ

k

L̂kpωxq

ż `8

´8

e`2iπu0ωuδpωu ´ dkωxqdωu (9)

“
ÿ

k

e`2iπu0dkωxL̂kpωxq. (10)

General image model: Now, considering the general model

in Eq. (3) the Fourier Transform of an image Bs
u0

is:

B̂s
u0

pωxq

“

ż `8

´8

e´2iπxωx

„ż `8

´8

Lpx´ us, u0 ` uqψpuqdu


dx

(11)

“

ż `8

´8

ψpuq

ż `8

´8

e´2iπpx`usqωxLpx, u0 ` uqdxdu (12)

“

ż `8

´8

e´2iπusωxψpuqL̂u0`upωxqdu. (13)

Using the FDL decomposition of L̂u0`u from Eq. (10), we

obtain:

B̂s
u0

pωxq

“

ż `8

´8

e´2iπusωxψpuq
ÿ

k

e`2iπpu0`uqdkωxL̂kpωxqdu

(14)

“
ÿ

k

e`2iπu0dkωxL̂kpωxq

ż `8

´8

e`2iπupdk´sqωxψpuqdu

(15)

“
ÿ

k

e`2iπu0dkωx ψ̂pωxps´ dkqq ¨ L̂kpωxq. (16)

One can easily verify that in the particular case of an infinitely

small aperture such that ψ “ δ, we have ψ̂ “ 1, thus Eq. (16)

becomes equivalent to the sub-aperture case in Eq. (10).

V. CONSTRUCTION OF THE LAYERS

The layer construction is performed from a set of m images

noted tBjujPv1,mw that follow the model of Eq. (3) (e.g.

images captured by cameras on the same plane and oriented

perpendicularly to this plane). Each image Bj is associated

with its angular coordinate uj , aperture function ψj , and

refocus parameter sj . Thanks to the genericity of this model,

different forms of input data may be used. For example, in

the case of a set of sub-aperture images, the aperture function

ψj of each image is equal to the dirac delta function δ. Note

that, in this case, the refocus parameter sj has no influence in

the equations (e.g. see Eq. (10)) and is not required. Another

notable example is that of a focal stack input (i.e. images with

the same angular coordinates uj and aperture functions ψj , but

with different refocus parameters sj).

The layer construction problem is formulated in the general

case in the next sub-section, assuming all the image parameters

are known. Then, in sub-section V-B, we show how to deter-

mine the positions uj of the views and the layer’s disparity

values dk when the input data is a set of sub-aperture images.

A. Problem Formulation

The results of Eqs. (10) and (16) show that for a fixed

spatial frequency ωx in the Fourier domain, the images Bj can

be simply decomposed as linear combinations of the Fourier

Disparity Layers. Therefore, the FDL representation of the

Light Field can be learned by linear regression for every

coefficient in the discrete Fourier domain.

We first compute the discrete Fourier Transform B̂j of each

image Bj and we construct, for each frequency component ωx,

a vector b such that bj “ B̂jpωxq. Given the disparity value

dk of each layer (k P v1, nw), we also construct the matrix

A P C
mˆn with:

Ajk “ e`2iπujdkωx ψ̂jpωxpsj ´ dkqq. (17)

By defining the vector x with xk “ L̂kpωxq, the FDL

decomposition in Eq. (16) is reformulated as Ax “ b. A

simple layer construction method then consists in solving an

ordinary linear least squares problem independently for each

frequency component ωx. In practice, however, this may be an

ill-posed problem. It is typically the case when the number of

available images is lower than the number of layers required to

represent the scene (i.e. m ă n). More generally, depending on

the input configuration, and for some frequency components,

the matrix A may be ill-conditioned. This results in over-fitting

and extreme noise amplification when the layer model is used

to render new images of the scene (e.g. view interpolation or

extrapolation). In order to avoid this situation, we include a

Tikhonov regularization term in the problem formulation:

x “ argmin
x

‖Ax ´ b‖
2

2
` λ ‖Γx‖

2

2
, (18)

where Γ is the Tikhonov matrix, and λ is a parameter

controlling the amount of regularization. The problem (18),

has a well-known closed form solution:

x “ pA˚
A ` λΓ˚

Γq´1
A

˚
b, (19)
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where ˚ is the Hermitian transpose operator (i.e. complex

conjugate of the transposed matrix).

In our implementation of the layer construction, the

Tikhonov matrix is defined according to the 2nd order view

regularization scheme presented in subsection V-D1 (see Eq.

(29)). It encourages smooth variations between close view-

points generated from the FDL model, which is intuitively a

desirable property for a Light Field.

B. FDL Calibration

We additionally propose a calibration method that jointly

estimates the layers’ disparity values dk and the angular

coordinates uj of the input images Bj . For simplicity, the

calibration is restricted to the case of sub-aperture images with

infinitely small aperture such that ψj “ δ. In this case, Eq.

(17) has a simpler expression Ajk “ e`2iπujdkωx . Note that

in the general configuration where the aperture is unknown,

both the aperture functions ψj and the refocus parameters sj
would also need to be estimated. However, that generalization

is out of the scope of this paper and is left for future work.

In what follows we express A as a matrix function

A : Rmˆn Ñ C
mˆn such that, for a matrix M P R

mˆn,

ApMqj,k “ e`2iπMj,k . The calibration problem can then be

stated in a similar way as the layer construction problem (18)

by treating the calibration parameters as unknowns in the

minimization. However, these parameters do not depend on

the frequency. Hence, the function to minimize is expressed

as a sum over the Q frequency components ωq
x (Q is equal to

the number of pixels in each input image):

min
xq,u,d

Qÿ

q“1

´
∥

∥Apωq
xud

Jqxq ´ b
q
∥

∥

2

2
` λ ‖Γxq‖

2

2

¯
, (20)

where the input view positions uj and the disparity values

dk are arranged in the column vectors u and d respec-

tively (udJ P R
mˆn). The vectors x

q and b
q contain the

Fourier coefficients of, respectively, the disparity layers and

the input images at the frequency ωq
x (i.e. x

q
k “ L̂kpωq

xq and

b
q
j “ B̂jpωq

xq). Unlike the layer construction problem, the ma-

trix Γ is defined according to the 2nd order layer regularization

approach detailed in subsection V-D2 (see Eq. (30)).

In order to solve this problem, we perform a gradient

descent along the vectors of parameters u and d. At each

iteration, the current estimate of u and d is first used to update

the layers values in each vector xq using Eq. (19). The layers

values are then used to compute the gradients ∇u and ∇d of

the objective function in Eq. (20) along u and d respectively.

By differentiation with respect to each element of u and d,

one can show that the gradients are expressed as:

∇uj “
ÿ

k

dk∇Pj,k (21)

∇dk “
ÿ

j

uj∇Pj,k, (22)

with P “ ud
J, and each column k of the corresponding

gradient matrix ∇P is:

∇Pk “ 4π
ÿ

q

Im
´
ωq
xx

q
k ¨ Apωq

xPqk ˝ pApωq
xPqxq ´ b

qq
¯
,

(23)

where ˝ is the Hadamard product (i.e. element-wise multipli-

cation), and Im is the imaginary part. Note that the matrix

Apωq
xPq was previously constructed to determine x

q , and can

thus be re-used in Eq. (23) to efficiently compute the gradients.

The computations are further accelerated by performing a

stochastic gradient descent, where only a small subset of the

Q frequency components ωq
x is selected randomly at each

iteration for the gradients computation. In our implementation,

subsets of 4096 frequency components were selected. There-

fore, the computational cost per iteration does not depend on

the image resolution.

Finally, given the gradients, the updated vectors u
1 and d

1

are then computed as

u
1 “ u´α

∇u

ǫ` ‖∇u‖
2

, and d
1 “ d´α

∇d

ǫ` ‖∇d‖
2

, (24)

where ǫ is a small value encouraging the stability of the

algorithm when the gradients become small (i.e. when u and

d are close to an optimum). In our experiments a fixed value

α “ 0.2 was used.

C. Calibration of a Relaxed FDL Model

Due to the assumptions of non-occluded Lambertian Light

Field in the problem definition, the FDL representation may

introduce distortions in occluded regions or for strong non-

Lambertian effects. In order to better cope with this limitation,

we propose a relaxation of the FDL model. In the original

FDL calibration (see previous subsection), the parameters in

u and d form a parameter matrix P “ ud
J, where each

element Pj,k corresponds to the shift applied to the kth layer

to approximate the jth input sub-aperture image. Since u

and d are column vectors, the rank of the shift parameter

matrix P is equal to 1. Hence, the shift applied to each

layer is proportional to the angular coordinates of the view

to reconstruct. However, this property is not suitable for non-

Lambertian surfaces and occlusions. Therefore, in the relaxed

FDL model, we remove the rank 1 constraint by searching

directly for the matrix P instead of u and d in the calibration

algorithm. For that purpose, the gradient descent is applied

using the gradients ∇P defined in Eq. (23). In order to obtain

satisfying convergence, the matrix P is initialized by the

solution of the original rank 1 constrained problem.

The advantage of the relaxed model for handling occlusions

or strongly non-Lambertian effects is illustrated in Section

VIII-B for the Light Field denoising application. Note that, for

this application, we only need to reconstruct the input views

for which the shift parameters were obtained in the matrix

P. Hence, at each frequency ωq
x, the Fourier coefficients of

the reconstructed views are given by Apωq
xPqxq . However,

for more general rendering tasks (e.g. view interpolation,

refocusing), the rank 1 constraint is necessary in order to apply

the rendering equation (16). Therefore, in the rest of the paper,

we consider the original FDL model unless otherwise stated.
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D. Regularization Schemes

In order to keep the layer construction and calibration

problems in Eqs. (18) and (20) easy to solve, we have used a

Tikhonov regularization. The definition of the Tikhonov matrix

Γ depends on the intended objective. In the most basic form,

classical l2 regularization is obtained by simply taking Γ equal

to the identity matrix In. This prevents the values in x (i.e.

Fourier coefficients of the disparity layers) from taking too

high values, which reduces the noise, but also results in a

loss of details. Furthermore, for the calibration problem, using

the l2 regularization may not accurately estimate the disparity

distribution of the Light Field as illustrated by the calibration

results of Fig. 3. The sorted disparity values shown in Fig. 3(b)

can be interpreted as an estimation of the cumulative disparity

distribution.

In this section, we present two schemes referred to as 2nd

order view regularization and 2nd order layer regularization

which are better suited to the layer construction and the

calibration respectively.

1) 2nd Order View Regularization: For the layer construc-

tion, we want to encourage smooth variations between close

viewpoints generated from the layers. For that purpose, at each

frequency, we penalize the second derivative of sub-aperture

images generated from the model with respect to the angular

coordinate. From the expression of sub-aperture images in Eq.

(10), the second derivative at a coordinate u0 is given by:

B2L̂upωxq

Bu2

ˇ̌
ˇ
u“u0

“ ´4π2
ÿ

k

wx
2dk

2e`2iπu0dkωxL̂kpωxq.

(25)

Let us now consider a set R of angular coordinates to

regularize. From Eq. (25), the 2nd order view regularization

then consists in constructing a matrix Γ where each row l

is associated to an angular coordinate ul P R and is defined

by Γl,k “ wx
2dk

2e`2iπuldkωx . For simplicity, we ignore the

constant factor ´4π2 in the definition of Γ since it can be

accounted for in the regularization parameter λ. Intuitively, in

order to apply the regularization at every coordinate in the

camera plane, one would need to define a matrix Γ with an

infinite number of rows (i.e. infinite set R). Although this

might seem impractical, we show in what follows that it can be

done by observing that the solution to the regularized problem

in Eq. (19) only requires the knowledge of Γ˚
Γ of finite size

nˆ n.

First, let us take a continuous interval R “ r´r{2, r{2s of

size r, instead of a discrete set. Then, each column Γk must be

interpreted instead as a function Γk : u ÞÑ wx
2dk

2e`2iπudkωx .

Thus, each element of Γ
˚
Γ is given by the following inner

product:

rΓ˚
Γsk1,k2

“ xΓk1
,Γk2

y “

ż r{2

´r{2

Γk1
puq ¨ ĚΓk2

puqdu,

(26)

“ ωx
4dk1

2dk2

2

ż r{2

´r{2

e2iπupdk1
´dk2

qωxdu,

(27)

“ ωx
4dk1

2dk2

2r sincprpdk1
´ dk2

qωxq. (28)

(a) (b)
Fig. 3. Example of calibration results for the synthetic Light Field ‘papillon’
[31] with 30 layers: (a) Estimated angular coordinates of the views (the ground
truth is the 9x9 regular grid). (b) Sorted disparity values. The vertical axis
represents the normalized index of each of the sorted values. The blue curve
was obtained by sorting all the pixels of the ground truth disparity map in
order to visualize the cumulative disparity distribution.

(a) (b) (c)
Fig. 4. Central view of the Light Field ‘papillon’ interpolated by constructing
a FDL from the 4 corner views with: (a) 2nd order view regularization, (b)
l2 regularization, (c) 2nd order layer regularization. The bottom right part
of each image is the error from the ground truth (magnified 5x). The given
PSNR is averaged over all the interpolated views. For the comparison, the
regularization parameter λ was adjusted in each case to obtain the best PSNR.

For convenience, we replace Γ
˚
Γ in Eq. (19) by the scaled

version ĆΓ˚Γ “ Γ
˚
Γ

r
, so that the amount of regularization

remains independent of the size of the integration domain in

Eq. (26) (i.e. area of the portion of the camera plane covered

by the regularization). In our implementation of the 2nd order

view regularization, we consider the full camera plane (i.e.

R “ p´8,8q) by making r tend towards the infinity. In this

case, ĆΓ˚Γ simply becomes a diagonal matrix such that:

rĆΓ˚Γsk,k “ ωx
4dk

4. (29)

Note that for ωx “ 0, Eq. (29) gives ĆΓ˚Γ “ 0, which does

not produce any regularization. Therefore, in practice, a small

value ǫ is added to the diagonal elements of ĆΓ˚Γ. This is

equivalent to adding a l2 regularization term ǫ ¨ ‖x‖2
2

to the

problem (18).

The advantage of the proposed 2nd order view regularization

over the simple l2 regularization is demonstrated in Fig. 4 for

the view interpolation problem.

2) 2nd Order Layer Regularization: For the calibration

step, however, it is preferable to use a regularization that does

not depend on the parameters dk. Otherwise, the expression

of the gradients ∇d would need to take the regularization

term into account, which can result in more complex gradient

computations and a slower convergence of the algorithm.
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Fig. 5. Top row: no padding. Bottom row: with zero-padding. From left to
right: Aperture image; Real part of the Fourier transform of the aperture image
(up-sampled with linear interpolation for the top row for the comparison);
Rendered result with magnified details. Zero-padding removes the aliasing in
the Fourier transform of the aperture, which better preserves contrasts in the
final rendered image (best viewed zoomed in).

Instead, we encourage smooth variations between successive

layers by defining Γ as a discrete approximation of the second-

order differential operator as follows:

Γ “

»
—————–

´2 1

1 ´2 1

. . .
. . .

. . .

1 ´2 1

1 ´2

fi
ffiffiffiffiffifl
. (30)

The 2nd order layer regularization thus penalizes large differ-

ences between neighboring layers, which results in a more

uniform distribution of the disparity values. As shown in

Fig. 3(b), the calibration using the l2 regularization (i.e.

Γ “ In) tends to find too many disparity values close to the

dominant disparity (between 0 and 0.5 in the figure) and may

underestimate other parts of the light field (e.g. with disparities

close to -1). The 2nd order layer regularization attenuates

that effect by encouraging a more uniform distribution. Note,

however, that for the layer construction, smoothness along the

layers is not desirable and produces artifacts along the edges

in the images rendered from the FDL model as shown in Fig.

4(c).

VI. LIGHT FIELD RENDERING

A. Implementation

Knowing the layers and their disparities, any view with

arbitrary aperture and focus can be rendered in the Fourier

domain by applying the FDL decomposition equation (16) and

by computing the inverse Fourier transform. The interpretation

in the spatial domain is that each layer is shifted (i.e. multi-

plied by e`2iπu0dkωx in the Fourier domain) and filtered (i.e.

multiplied by ψ̂pωxps´ dkqq in the Fourier domain).

However, except for specific aperture shapes (e.g. square

or dirac), the Fourier transform ψ̂ of the aperture function

has no analytical expression. Hence, in our implementation,

an approximation is obtained by drawing the aperture shape

as an image, and by taking its discrete Fourier transform.

A linear interpolation is used to determine ψ̂pωxps ´ dkqq
from the discrete frequency samples. In order to increase

the accuracy of this approximation, the aperture image is

zero-padded before computing its Fourier transform, which

(a)

(b)

(c)
Fig. 6. Refocused image using 5x5 views of the Light Field ‘Lego Knights’
from the Stanford dataset [32]: (a) Shift and Sum method [4], (b) Our method
using a square aperture covering the angular coordinates of the input 5x5
views. (c) Our method using a larger circular aperture. Angular aliasing is
reduced in our method by considering all the angular coordinates within the
aperture.

increases the resolution in the spectral domain. The effect

of the padding is illustrated in Fig. 5 showing that the

resulting increased spectral domain resolution allows a better

preservation of the contrasts in the rendered images. Note

also that the spatial resolution of the aperture image can be

taken arbitrarily large without affecting the aperture size in

the rendered image. In practice, we control the aperture size

by replacing ψ̂pωxps ´ dkqq in Eq. (16) by ψ̂pfωxps ´ dkqq
with a scaling factor f . For example, taking f “ 0 simulates

a sub-aperture image. On the other hand, taking a large factor

f produces a shallow depth of field effect without affecting

the complexity of the method.

B. Visual Results and Discussion

In Fig. 6, we show a comparison of our approach with the

conventional Shift and Sum refocusing method [4]. Thanks to

the regularization used in the layer construction (see Section

V-D), the light field is extended angularly, which allows

rendering images with reduced angular aliasing as in Fig. 6(b).

As shown in Fig. 6(c), the aperture can also be taken larger

than the baseline of the input Light Field from which the FDL

model is constructed. The possibility to change the shape of

the aperture also gives better control over the bokeh (i.e. the

quality of the out-of-focus regions).

Another important and often overlooked factor influencing

the bokeh is the color space of the input image data. The

refocusing Eqs. (1) and (3) assume that the Light Field rays

Lpx, y, u, vq are proportional to luminance data. However,

images are traditionally represented in a non-linear color space

(e.g. gamma corrected) in order to account for the non-linearity

of the human visual system as well as typical displays.
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(a)

(b)
Fig. 7. Rendered result when the processing is performed in (a) gamma
corrected space, (b) linear space. Linear space processing results in brighter
out-of-focus regions where the bokeh shape (i.e. aperture shape shown in the
top left corner) appears more clearly. However, it also increases the artifacts
(see details in the green rectangles).

This non-linearity affects the appearance of the refocused

images. More realistic bokeh can be achieved by applying

inverse gamma correction to the input images before the layer

construction, and by applying gamma correction back after

the rendering step, as shown in Fig. 7. One limitation of this

approach, however, is that computing the layers in a linear

color space also produces more visible artifacts. This is due

to the fact that solving the layer construction problem (18) in

a linear color space does not take the non-linearity of human

perception of luminance into account.

A demonstration of our rendering application is available

in the supplementary materials. It shows that our approach

can be used for controlling simultaneously the viewpoint, the

aperture shape and size, and the focus in real-time.

VII. COMPLEXITY

In this section, we analyse the complexity of the different

processing steps proposed in our approach.

First, regarding the spatial resolution, our implementation

takes advantage of the symmetry property of the Fourier

transform for real signals. Given a real valued function g, its

Fourier transform ĝ is such that ĝp´ωq “ ĝpωq. Hence, for

the layer construction and the rendering algorithms, only half

of the discrete spectrum must be computed. The remaining

frequencies are directly obtained by copying and taking the

complex conjugate of the first half. This symmetry property is

also used in the calibration step by selecting random frequen-

cies only in one half of the spectrum for the stochastic gradient

descent. Regarding memory requirements, using only half of

the frequencies in the Fourier representation compensates the

fact that complex numbers require twice as much memory as

real numbers.

Fig. 8. Reconstruction PSNR (average over views) for different Light Fields
with respect to the number of layers used in the FDL model. For the Light
Field ‘Lego Knights’, two different results are shown using either the full
17x17 views or only the 5x5 central views.

In addition to the spatial resolution, another important

factor to consider for the complexity is the number of layers

used. In order to analyse the number of layers needed for

our model, we have performed an experiment where Light

Field sub-aperture images are used for FDL calibration and

construction with varying numbers of layers. The input images

are then reconstructed via FDL rendering. Several Light Fields

from various datasets were tested including natural Light

Fields captured with a first generation Lytro camera (‘Totoro

Waterfall’ [33]), a Lytro Illum camera (‘Fruits’ and ‘Toys’

[34]), a Raytrix R8 camera (first frame of the Light Field

‘ChessPieces’ [35]), a traditional camera moving on a gantry

(‘Lego Knights’ [32]), and synthetic Light Fields (‘papillon’

and ‘buddha’ [31]). Fig. 8 presents the average Peak Signal

to Noise Ratio (PSNR) of all the reconstructed sub-aperture

images with respect to the number of layers. The saturation

of the PSNR curves show that 15 to 30 layers are generally

sufficient, and using more layers does not significantly change

the results. Light Fields with a large baseline, and thus large

differences between extreme viewpoints (e.g. Lego 5x5, Lego

17x17), typically require more layers than smaller baseline

Light Fields. However a very large range of viewpoints also

implies large occlusions, which results in a significant loss

when reconstructing the sub-aperture images, as observed with

Lego 5x5 and Lego 17x17. This makes the analysis difficult

for very large baseline Light Fields which may still benefit

from more than 30 layers in the ideal non-occluded case. Note

that for the small baseline Light Fields captured with Lytro

cameras, the relatively low PSNR is due to inaccuracies in the

input data (e.g. noise, color differences between views) which

are reduced in our reconstruction. More details and results on

the reduction of noise and color inconsistencies are presented

in section VIII-B.

The computing times for the different processing steps

are presented in Table II for all the Light Fields in Fig. 8.

The table also provides the number of iterations needed for

the calibration since it has a large impact on the computing

time. For this experiment, 30 layers were used although

less layers would be sufficient for some of the Light Fields

(e.g. see ‘ChessPieces’, ‘Toys’, ‘Totoro Waterfall’ in Fig. 8).

The processing times were measured using an Intel Core i7-
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TABLE II
COMPUTING TIMES FOR OUR MATLAB IMPLEMENTATION USING AN INTEL

CORE I7-7700 CPU AND AN NVIDIA GEFORCE GTX 1080 GPU. FOR

EVERY LIGHT FIELD 30 LAYERS WERE USED.

Input Light Field (resolution)
Calibration
time (#iter)

Layer
construction

Render

Lego Knights (1024x1024x5x5) 9.2 s (184) 2.2 s 35 ms

Lego Knights (1024x1024x17x17) 56 s (403) 7.2 s 35 ms

Chess Pieces (1920x1080x5x5) 5.8 s (90) 4.3 s 53 ms

Fruits (625x434x9x9) 5.1 s (70) 0.9 s 12 ms

Toys (625x434x9x9) 6.2 s (91) 0.9 s 11 ms

Totoro WaterFall (379x379x7x7) 3.8 s (72) 0.4 s 7 ms

papillon (768x768x9x9) 7.8 s (109) 1.9 s 20 ms

buddha (768x768x9x9) 8.1 s (113) 1.9 s 19 ms

7700 CPU and a Nvidia GeForce GTX 1080 GPU. All the

proposed steps were implemented in Matlab using the parallel

computing toolbox in order to process the different frequencies

in parallel on the GPU.

Although the processing time for the calibration and layer

construction steps is affected by the number of input views

(i.e. angular resolution), the rendering time only depends on

the spatial resolution and the number of layers. For exam-

ple, the same rendering time is obtained for ‘Lego Knights’

using either 5x5 or 17x17 input views. This is particularly

advantageous when rendering images with a large aperture size

that are traditionally obtained by averaging a large number

of sub-aperture images with the Shift and Sum algorithm

[4]. Note that similarly to our method, the Fourier Slice

refocusing algorithm [5] first transforms the Light Field in an

intermediate representation in order to perform fast refocusing.

In that method the refocusing complexity does not depend on

the number of input views. However, since the intermediate

representation is the 4D Fourier transform of the Light Field,

the memory requirement remains proportional to the number

of views. Furthermore, it does not allow changing the aperture

or the viewpoint.

VIII. DIRECT APPLICATIONS

A. View Interpolation and Extrapolation

As shown in Fig. 6, our approach reduces the angular

aliasing and allows extending the aperture size for an input

Light Field consisting of a sparse set of sub-aperture images.

Equivalently, the layer construction can be seen as a view inter-

polation and extrapolation method since sub-aperture images

with arbitrary angular coordinates can be rendered from the

FDL model.

1) Comparison and Combination with Sparsity Based Ap-

proach: For evaluating the view interpolation capability of the

method, we have compared our results with the recent method

of Vagharshakyan et al. [20] that enforces the sparsity of the

(a) (b) (c) (d)
Fig. 9. Tested sampling configurations of the input views (shown in red) for
the view interpolation: (a) ‘2x2’, (b) ‘3x3’, (c) ‘5x5’, (d) ‘border’.

TABLE III
VIEW INTERPOLATION RESULTS FOR THE LIGHT FIELD ‘PAPILLON’. THE

RESULTS GIVEN ARE THE AVERAGE PSNR OF THE INTERPOLATED VIEWS

AND THE TOTAL RECONSTRUCTION TIME (INCLUDING CALIBRATION FOR

THE FDL METHOD).

Method \ Input views 2x2 3x3 5x5 border

Shearlet [20]
34.8 dB
143 mn

40.8 dB
157 mn

41.8 dB
185 mn

37.2 dB
105 mn

FDL
36.8 dB

5.4 s

40.9 dB
7.8 s

42.9 dB

8.9 s

43.1 dB

8.8 s

Shearlet(full)+FDL
35.5 dB
143 mn

41.4 dB
157 mn

42.6 dB
185 mn

40.1 dB
105 mn

Shearlet(border)+FDL
38.4 dB

53 mn
42.0 dB

53 mn
42.7 dB
53 mn

x

epipolar images of the Light Field in the shearlet domain.

For the comparison, the synthetic Light Field ‘papillon’ was

used with several sampling configurations of the input views

as illustrated in Fig. 9. The average PSNR of the interpolated

views and the computation times are shown in Table III. The

table also includes the results for two schemes combining the

FDL and the Shearlet approaches. In the ‘Shearlet(full)+FDL’,

the full Light Field is reconstructed with [20]. Then, a FDL

model is computed from the input views and the previously

reconstructed intermediate views. The final reconstruction is

obtained with FDL rendering. The ‘Shearlet(border)+FDL’

scheme is similar, but only the views at the periphery of

the Light Field are interpolated using [20]. Our experiments

with the Shearlet method were performed using the author’s

implementation of the epipolar image reconstruction with 100

iterations. The reconstruction of the full Light Field was

performed by scanning the epipolar images in the ‘direct’ order

as detailed in [20].

The results in Table III show that our FDL view interpola-

tion performs particularly well in the ‘border’ configuration.

The Shearlet method, on the other hand, does not fully take

advantage of this configuration as it processes each epipolar

image independently using only the input views located on the

corresponding row or column in the Light Field. In the other

configurations, a higher PSNR is also observed with the FDL

method. However, when the input Light Field is too sparse

(e.g. 2x2), it produces ringing artifacts as shown in Fig. 10. In

this situation, the Shearlet method better preserves the edges

than our FDL method, but it tends to blur the fine details and

introduce color distortions, which explains the lower PSNR.

The best strategy for such sparse inputs is then to combine the

two methods with the ‘Shearlet(border)+FDL’ scheme which

does not produce ringing artifacts. In comparison with the

Shearlet method alone, this scheme better keeps the details

and color consistency as shown in Fig. 10. It is also signifi-

cantly faster since the reconstruction of the interior views is

performed using our FDL approach which requires a negligible

computing time compared to the Shearlet method.

2) Comparison with Deep Learning Approaches: We have

additionally performed comparisons with three state-of-the art

deep learning approaches [12], [14], [16]. The method of

Kalantari et al. [12] uses two Convolutional Neural Networks

(CNN) where the first one determines a disparity map, while

the second one refines the disparity compensated views. Yeung

et al. [16] have proposed a CNN defining an end-to-end

mapping between sparse input views and the dense Light
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(a) (b) (c) (d)

Fig. 10. Interpolation of the central view from the 4 corner views of the Light Field ‘papillon’ (i.e. 2x2 configuration) using: (a) only FDL, (b) only Shearlet
[20], (c) ‘Shearlet(full)+FDL’, (d) ‘Shearlet(border)+FDL’. The bottom images show the residual computed with the ground truth central view (magnified 5x).
A video of the results is available in the supplementary materials.

Field. Finally, the method of Wu et al. performs super-

resolution of the epipolar images. For the comparison, the

natural Light Fields ‘Fruits’ and ‘Toys’ [34] as well as ‘Friends

1’ and ‘Vespa’ [36] were used with gamma correction. They

were captured with a Lytro Illum camera, similarly to the

Light Fields used for the training in the tested deep learn-

ing approaches. The PSNR results and average runtimes are

presented in Table IV for the configurations with 2x2 input

and 8x8 output views (2x2Ñ8x8) and with 3x3 input and

7x7 output views (3x3Ñ7x7). Note that for the method of

Yeung et al. [16], the available CNN model only applies to

the 2x2Ñ8x8 configuration. Although the method of Kalantari

et al. [12] was designed for 2x2 input views, we have used

it in the 3x3Ñ7x7 configuration by treating the quadrants of

the Light Field separately. Furthermore, in [12] and [16], the

output Light Field is cropped in the spatial dimensions. For

the comparison, the same crop (12 pixels on each side) was

applied to compute all the PSNR values in Table IV.

The CNNs used in [12] and [16] are particularly efficient for

the 2x2Ñ8x8 configuration for which they were designed and

trained. In this case, they obtain better results than our FDL

approach which is penalized by ringing artifacts, similarly to

the results shown in Fig. 10 (a). However, the performances of

Kalantari et al’s method drop in the 3x3Ñ7x7 configuration,

indicating that the model learned for 2x2 input views does not

generalize well to more dense inputs. Our FDL model, on the

other hand, provides significantly better interpolation in this

case thanks to the higher density of input views, leading to a

better conditioning of the FDL construction problem. While

Yeung et al. have also reported in [16] high quality results

for the 3x3Ñ7x7 scenario, an adapted version of their model

must be designed and trained for each configuration.

TABLE IV
VIEW INTERPOLATION RESULTS FOR NATURAL LIGHT FIELDS. THE

RESULTS GIVEN ARE THE AVERAGE PSNR OF THE INTERPOLATED VIEWS.

Fruits Toys Friends 1 Vespa
average
runtime

Yeung

et al. [16]
2x2Ñ8x8 33.1 32.9 37.5 34.4 40s

Kalantari

et al. [12]
2x2Ñ8x8 34.2 33.2 37.1 34.4 10mn30s

3x3Ñ7x7 31.7 32.1 36.4 34.0 7mn

Wu

et al. [14]
2x2Ñ8x8 28.3 32.0 36.6 32.4 19mn

3x3Ñ7x7 35.3 35.7 39.4 37.7 13mn30s

FDL
2x2Ñ8x8 32.4 32.5 36.8 32.1 6s

3x3Ñ7x7 35.9 35.3 40.0 36.9 6s

(a) (b)
Fig. 11. Interpolated view (5,5) of the Light Field ‘Vespa’ from the
configuration 3x3Ñ7x7: (a) Wu et al. (b) FDL. Our FDL method produces
more detailed results (see red boxes). However, textures of occluded regions
become apparent on the occluding objects (see green boxes).

Our PSNR results are more comparable to those of Wu

et al. [14]. Visual comparisons in Fig. 11 additionally re-

veals that our method better preserves the details. However,

highly textured occluded areas become apparent on the fore-
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(a) (b)
Fig. 12. Simultaneous denoising and color correction of the Light Field
‘TotoroWaterfall’ (captured with a Lytro camera): (a) Original (b) Processed
with the FDL method. The top image corresponds to a view on the side of
the Light Field. Epipolar images corresponding to the horizontal red line are
shown on the bottom to visualize the color consistency between views.

ground, making the borders of occluding objects appear semi-

transparent. Note also that for the tested Light Fields and

the two configurations 2x2Ñ8x8 and 3x3Ñ7x7, the average

computing time of [14] was about 16 minutes against only 6

seconds for our method (including the calibration step).

B. Denoising and Other Filtering Effects

Another direct application of our FDL construction al-

gorithm is the Light Field denoising problem. Denoising

is naturally obtained by constructing a FDL model from a

Light Field, and by rendering images using the same angular

coordinates as the input sub-aperture images. The noise is

filtered in this approach thanks to the model definition that

enforces the Light Field dimensionality gap prior [21] (see

Section IV-A). Further noise reduction is also allowed by

the proposed regularization that better ensures consistency

between views. Note that for the same reasons, the method also

ensures color and illumination consistency along the angular

dimensions. Hence it can serve simultaneously as a denoising

and color correction method for Light Fields with variations

of color and illumination between the sub-aperture images. In

practice, this is particularly useful for Light Fields captured

with plenoptic cameras (e.g. Lytro), as shown in figure 12.

(a) (b)
Fig. 13. Spatial anti-aliasing effect of the FDL model: (a) Original central
view (detail of the Light Field ‘papillon’), (b) Reconstructed view from the
FDL model. The effect is particularly visible on the butterfly’s antennas.

TABLE V
DENOISING RESULTS FOR THE LIGHT FIELD ‘TAROT’ USING 11X11 INPUT

VIEWS AND NOISE WITH STANDARD DEVIATION σ “ 10 AND σ “ 50.

σ “ 10 σ “ 50 average
runtimePSNR SSIM PSNR SSIM

noisy input 28.1 0.787 14.2 0.283

LFBM5D [38] 39.3 0.983 32.7 0.937 „5h30mn

HF4D [29] 31.2 0.888 22.3 0.603 „40s

FDL (original) 32.0 0.945 26.6 0.785 „1mn30s

FDL (relaxed) 33.4 0.946 26.1 0.760 „2mn15s

Fig. 14. Denoising results for the Light Field ‘Tarot’. A view on the corner
of the Light Field is shown. For the test, the Light Field was corrupted by
gaussian noise with standard deviation σ “ 50.

Similarly, by ensuring consistency between multiple views,

the FDL model and its regularization act as a spatial anti-

aliasing filter in the case of spatially aliased Light Fields

(see Fig. 13). This situation typically arises with Light Fields

captured with lenslet-based plenoptic cameras because of the

low lenslet resolution. It has been shown in [37] that such

Light Fields are spatially non-bandlimited and that despite

the low spatial sampling, higher frequencies than the Nyquist

frequency can be recovered in theory. However, we construct

the layers at the same spatial resolution as the input views.

Therefore, while an anti-aliasing effect is produced, these

higher frequencies are not recovered in our method. Construct-

ing higher resolution layers to fully exploit the 4D Light Field

sampling would allow Light Field super-resolution and is left

for future work.

For Light Fields with a wide baseline, our processing may

also introduce distortions due to the assumptions of non-

occluded Lambertian Light Field. In this case, better results
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can be obtained using the relaxed version of the FDL model

presented in Section V-C. Denoising results are presented in

Fig. 14 for the Light Field ‘Tarot’ that exhibits strong non-

Lambertian effects. The reflections in the crystal ball are better

preserved by the relaxed FDL model than the original one. For

the comparison, the results obtained with the LFBM5D [38]

and the Hyperfan 4D filter (HF4D) [29] are also shown. The

corresponding PSNR and SSIM results are given in Table V.

The best results were obtained with the LFBM5D method

that completely removes the noise while preserving most of

the details in the image. However, this method performs heavy

processing and typically requires several hours for a Light

Field. The HF4D method is faster since it simply consists in

multiplying the 4D Fourier Transform of the Light Field by

a 4D filter. This hyperfan filter is designed to attenuate the

frequencies outside of the theoretical region of support of the

Light Field in the 4D Fourier domain, under the assumption of

a non-occluded Lambertian scene. With comparable process-

ing times, our FDL approach removes more noise thanks to the

linear optimization used instead of the direct filtering in the

HF4D method. Furthermore, our model can be more easily

generalized for the case of scenes with occlusions or non-

Lambertian surfaces, as shown with the proposed relaxation.

Note however that for a high level of noise (i.e. σ “ 50), the

relaxation of the FDL model results in lower objective scores

despite the better preservation of the non-Lambertian surface

observed in Fig. 14. The reason is that the relaxed model also

preserves more noise from the input data. Hence the choice of

the original or the relaxed version of the model is a tradeoff

between the noise level and the amount of occlusions or non-

Lambertian effects.

IX. CONCLUSION AND PERPECTIVES

We have presented a new representation for Light Fields

called Fourier Disparity Layers. The light information in the

scene is decomposed into several layers, each corresponding

to a depth plane parameterized by a disparity value. The

decomposition step is formulated in the Fourier domain using

a simple linear least square problem per-frequency, hence

allowing fast processing with GPU parallelization. We have

demonstrated the advantages of the FDL representation for

several Light Field processing tasks. Those include real time

rendering, view interpolation, denoising, as well as a calibra-

tion step that determines the angular coordinates of the input

sub-aperture images along with an optimal set of disparity

values for each layer.

The computational efficiency of our layer construction

method coupled with its flexibility regarding the type of input

images opens perspectives for an even larger range of applica-

tions. For example, our supplementary video presents results of

FDL model construction from a focal stack, where the camera

aperture and the focus parameter of each image are known.

More generally, the method could even take advantage of a

hybrid capture system taking images with different apertures,

focusing depth, and varying positions on the camera plane.

Furthermore, since our approach does not require a specific

pattern of the input view positions, it can greatly simplify the

capture of Light Fields by removing the need for the different

viewpoints to be regularly sampled on a grid.

However, despite this flexibility, we have shown that the

quality of the FDL model produced with our method depends

on the input configuration. For example, while very accurate

view interpolation is obtained from the sub-aperture images

located on the borders of the Light Field, a too sparse

viewpoint sampling may lead to ringing artifacts. Furthermore,

for Light Fields with a large baseline, the FDL model is more

likely to produce visible errors due to large occlusion areas

or non-Lambertian effects. In the paper, we have partially

addressed these limitations. In the case of a too sparse view-

point sampling, a combination of our view interpolation with

a state of the art approach was shown to outperform either

of the two methods taken individually. A better handling of

occlusions and non-Lambertian effects was also obtained, for

the denoising application, using a relaxed version of the model.

In the aim of further extending the applicability of the FDL

approach, future work may focus on generalizing the relaxed

model to view interpolation, or including an additional prior

directly in the layer construction (e.g. sparsity in the Shearlet

domain similarly to [20]) to better cope with very sparse or

very noisy Light Fields. A generalization of the calibration to

wide aperture images would also be a valuable tool to facilitate

the creation of Light Fields from less conventional input data

such as focal stacks.

APPENDIX A

PROOF OF SPARSITY PRIOR

The spatial regions Ωk are defined for the central view at

u “ 0. The corresponding regions Ωu
k can also be defined for

any view u by Ωu
k “ tx P R | x` udk P Ωku.

The expression in Eq. (4) is then formulated as:

@k P v1, nw,@px, uq P Ωu
k ˆR, Lpx, uq “ Lpx`udk, 0q. (31)

In the assumption of a non-occluded Light Field, the regions

Ωu
k are such that @u P R, x P Rz

Ť
k

Ωu
k , Lpx, uq “ 0, and for

any fixed u P R, the sets Ωu
k are pairwise disjoint. Hence, the

Fourier Transform of the Light Field is given by:

L̂pωx, ωuq “

ĳ

R2

e´2iπpxωx`uωuqLpx, uqdxdu

“

ż `8

´8

e´2iπuωu

ÿ

k

«ż

Ωu
k

e´2iπxωxLpx, uqdx

ff
du.

(32)

Using Eq. (31), and by change of variable we obtain:

L̂pωx, ωuq

“

ż `8

´8

e´2iπuωu

ÿ

k

«ż

Ωu
k

e´2iπxωxLpx` udk, 0qdx

ff
du

“

ż `8

´8

e´2iπuωu

ÿ

k

„ż

Ωk

e´2iπpx´udkqωxLpx, 0qdx


du.

(33)
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By re-arranging the terms the result is:

L̂pωx, ωuq

“
ÿ

k

„ż `8

´8

e´2iπupωu´dkωxqdu

ż

Ωk

e´2iπxωxLpx, 0qdx



“
ÿ

k

”
δpωu ´ dkωxqL̂kpωxq

ı
.

(34)

where we define L̂kpωxq “
ş
Ωk
e´2iπxωxLpx, 0qdx. ˝
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