
Using LSTM for Automatic Classification of
Human Motion Capture Data

Rogério E. da Silva1,2, Jan Ondřej1,3 and Aljosa Smolic1

1V-SENSE, School of Computer Science and Statistics, Trinity College Dublin, Ireland
2Department of Computer Science, Santa Catarina State University, Brazil

3Volograms, Dublin, Ireland
{dasilvro, smolica}@scss.tcd.ie, jan@volograms.com

Keywords: human motion classification, motion capture, content analysis, deep learning, artificial intelligence

Abstract: Creative studios tend to produce an overwhelming amount of content everyday and being able to manage these
data and reuse it in new productions represent a way for reducing costs and increasing productivity and profit.
This work is part of a project aiming to develop reusable assets in creative productions. This paper describes
our first attempt using deep learning to classify human motion from motion capture files. It relies on a long
short-term memory network (LSTM) trained to recognize action on a simplified ontology of basic actions like
walking, running or jumping. Our solution was able of recognizing several actions with an accuracy over 95%
in the best cases.

1 INTRODUCTION

Creative industry is a broad term generally used to
refer to any company devoted to create content for
games, animations, AR/VR, VFX, etc. Over time,
the amount of creative content that can be produced
by these companies can easily become overwhelm-
ing; how big? it will depend on the size of the com-
pany itself. Studios often rely on their own produc-
tion pipeline to reduce time and effort spent producing
new content, therefore reducing their production costs
in order to increase profit. One effective way of reduc-
ing costs is by reusing content from older productions,
adapting them into new contexts, thus speeding up the
production. Despite that this notion sounds reason-
able, achieving it in a production setting is not easy,
because, as mentioned before, being able to retrieve
the one specific desired content among the millions
of “assets” being produced every year (e.g. 3D mod-
els, textures, sound effects, soundtracks, animations,
scripts, etc.) has proven to be a high demanding task.

One particular asset that has great interest for the
creative industry is motion captured data (mocap)
(Menache, 2011; Delbridge, 2015). Consider the fol-
lowing scenario: an animator needs to animate a se-
quence where a character walks limping from its left
leg due to an injury; instead of having the motion cap-
ture team recording a new sequence in the mocap lab,
the animator remembers that a few years back he al-

ready animated a similar sequence of a limping walk
which means he could adapt this sequence from that
old one (if he manages to remember which file con-
tains that desired animation). So, he makes a quick
search in the backup databases only to learn that the
studio has, in fact, thousands of motion captured files
in storage! Now, how to find the one he’s looking for?
Re-recording the sequence in the mocap lab. might
be, in this case, a faster alternative to pursue (although
not cheaper).

This hypothetical situation is frequently observed
in a production pipeline, and finding ways to automa-
tize the process for documenting creative contents be-
ing produced (so to facilitate content retrieval) would
have a big impact in reducing time and effort a pro-
duction team would have to spend searching through
a database of older projects.

This work focuses on studying ways for automa-
tizing the motion capture tagging process. To tag a
content means to label it according to a given ontol-
ogy, so that later it could more easily be found by tag-
based searches, thus facilitating its retrieval and use.
Our approach relies on deep learning and long short-
term memory neural networks (LSTM) to analyze a
series of mocap data files, classifying them accord-
ingly. This work is being developed under the con-
text of the SAUCE project (Smart Assets for re-Use
in Creative Environments) that is a three-year EU Re-
search and Innovation project between several compa-

nies and research institutions to create a step-change
in allowing creative industry companies to re-use ex-
isting digital assets for future productions.

The goal of SAUCE project is to produce, pilot
and demonstrate a set of professional tools and tech-
niques that reduce the costs for the production of en-
hanced digital content for the creative industries by
increasing the potential for re-purposing and re-use
of content as well as providing significantly improved
technologies for digital content production and man-
agement (SAUCE Project, 2018).

In this work, we studied ways for using long short-
term memory networks to automatically classify con-
tent from motion captured data according to a given
ontology. We have designed a LSTM architecture that
accepts motion captured data and determines the ac-
tions being portrayed in each file. This work repre-
sents a first step for SAUCE project in developing
a general-purpose media classifier system that could
help speeding up a creative pipeline process.

In the next section we discuss the problem of hu-
man motion classification then, on Section 3 a brief
literature review on motion capture, long short-term
memory neural networks (LSTM) and a few related
works are presented and discussed. Following, Sec-
tion 4 explains our experiments and results we ob-
tained from applying our method. Finally, we present
our conclusions and final remarks in Section 5.

2 HUMAN MOTION
CLASSIFICATION PROBLEM

Classifying motion means determining what kind
of action (e.g. walking, running, jumping, fighting,
dancing, etc.) is being portrayed by any given human
motion in space. Tracking motion in space is usually
achieved by motion capture that involves decompos-
ing each motion as a series of three-dimensional poses
(called a skeleton) in time (see Section 3.1).

Therefore, being able to understand motion means
determining temporal relations among changes occur-
ring to specific body parts over time while performing
each given movement. In this work, we are interested
in studying ways for automatic labelling a series of
motion captured data to facilitate its reuse in future
productions by a creative studio.

According to (Martinez et al., 2017), “learning
statistical models of human motion is a difficult task
due to the high-dimensionality, non-linear dynamics
and stochastic nature of human movement”. Classify-
ing data involves analyzing each candidate extracting
a series of properties from it trying to match them to a
specific class in a set of known classes (an ontology).

Several issues need to be tackled while working on
this kind of problem:

1. finding a suitable ontology description that is
an enumeration of possible classes and their at-
tributes (the criteria used to identify an element of
that class);

2. an adequate knowledge representation on how
to represent ontological attributes in a way that ar-
tificial intelligence can work with;

3. a prediction criteria to describe how to deter-
mine if a given candidate belongs to a certain
class.

In the following sections we describe how to
track and represent spatial motion of humans, how
long short-term memory networks work and why we
choose to use them in this research and finally, a
few related works aiming human motion classifica-
tion problem are presented.

3 STATE OF THE ART

3.1 Motion Capture

Motion capture (or mocap) is the process of recording
the movements of objects or people via special hard-
ware setups . There are several possible technologies
that can be applied to capture movement in space:

Optical Systems utilize data captured from image
sensors to triangulate the 3D position of a sub-
ject between two or more cameras calibrated to
provide overlapping projections. This can be
achieved using special markers that can be pas-
sive (reflective) or active (synchronized flashing
LEDs); they can also use markerless tracking sys-
tems that relies on computer vision to recognize
human parts from the set of cameras;

Non-optical Systems any other technology that al-
lows motion tracking. The most common ones
are: inertial systems use inertial measurement
units (IMUs) containing a combination of gyro-
scopes, magnetometers, and accelerometers, to
measure rotational rates; mechanical motion are
often referred to as exoskeleton motion capture
systems, due to the way the sensors are (directly)
attached to the body to perform the tracking; and
magnetic systems calculate position and orienta-
tion by the relative magnetic flux of three orthogo-
nal coils on both the transmitter and each receiver.

One approach that is very popular these days and
is traditionally employed by animation studios in-
volves an actor wearing a suit covered with optical

markers that can then be tracked by an optical system
of infrared cameras.

From these recordings results a series of 3D co-
ordinates for each marker (tracked several times per
second) that can later be mapped to a character as an
animation (this technique is called retargeting). Fig-
ure 1 shows a few frames of a skeletal animation ob-
tained via a motion capture session of a walk (CMU
Graphics Lab, 2018).

Figure 1: Motion captured sequence of a walk

Regarding file formats for storing motion capture
data one popular choice is the BVH format. The Bio-
vision Hierarchical data (BVH) file format was orig-
inally developed by Biovision (a motion capture ser-
vice company) to distribute mocap data to their cus-
tomers. Later, it became a very popular format for
storing mocap.

The reason why we decided to adopt this format is
because while other motion capture formats, like the
C3D format (https://www.c3d.org/), store only
the coordinates for each tracked markers (Figure 2 on
the left), the BVH format also represents hierarchical
relations between joints, i.e., their physical relations
called a skeleton (Figure 3), making it simpler to cor-
relate movements between adjoined joints (Figure 2
on the right).

Figure 2: C3D markers vs BVH Skeleton

Motion capture data is recorded as a series of mo-
tion channels, each representing one spatial location
and/or orientation of a joint. Since the amount of
channels is dependent on the number of joints and the
number of degrees of freedom (DOF) of each joint,
the size of the frame can vary from file to file.

3.2 Long Short-Term Memory Neural
Networks

The Long Short-Term Memory (LSTM) network is a
type of Recurrent Neural Network (RNN), which is a
special type of neural network designed for sequence
problems like, for instance, texts, speech, and anima-
tions. Traditional RNNs contain cycles that feed the

Figure 3: Example of a skeleton and motion channels defi-
nition in a BVH file

network activation from a previous time step as inputs
to influence predictions at the current one (Brownlee,
2018; Hochreiter and Schmidhuber, 1997).

Despite the fact that RNNs can learn temporal re-
lations, their main limitation is regarding training in
a problem known as the “vanishing gradient”. This
problem happens when, during training of a recurrent
process, the weights change become so small that they
have no effect in learning the data (or so large in the
other way around: “exploding gradient”).

LSTMs solve these problems by design. All infor-
mation being propagated through the network should
pass first by three gates. These gates are activation
functions especially designed to work on the data so
to only allow relevant information to continue being
propagated during training. The three gates are:
Forget Gate decides what information to discard

from each layer;
Input Gate decides which values from the input to

update the memory;
Output Gate decides what to output based on the in-

put and the memory.
In the literature, several variants of this architec-

ture can be found where the number of gates can vary
to suit specific contexts and needs .

3.3 Related Works

Two distinct classes of works involving automatic
recognition of the human skeleton, can be found in
the literature: human pose estimation and human ac-
tion classification. We argue that, despite the clear
similarities between the two in terms of their goals
(i.e. the recognition of human motion), they signifi-
cantly differ in most of the technical aspects involved
in how to tackle with the problem, namely, data rep-
resentation and processing:
Human Pose Estimation aims at detect and esti-

mate human poses in video format (resulting from

actual recordings of people or graphical renditions
of 3D motion capture data), then extracting skele-
tal information that can include depth estimation
(3D) or not (2D). The most common approach
used in this context involves analyzing the pixels
of each frame of a video using classical computer
vision techniques.

Just to mention a few examples of works that
adopt this approach: (Du et al., 2016; Tekin et al.,
2016; Toshev and Szegedy, 2014).

Human Action Classification aims at interpreting
3D motion from skeletal data analysis of actual
spatial recordings (as described in Section 3.1).

In this particular sense, not many works have been
found in the literature. Some examples that have,
somehow, influenced our work are:

• In (Bütepage et al., 2017) the authors trained
a LSTM to predict future 3D poses from the
most recent past. The system is described as an
encoder-decoder network for generative 3D mod-
els of human motion based on skeletal animation;

• In (Gupta et al., 2014) the authors propose an
approach to directly interpret mocap data via v-
trajectories that are sequences of joints connected
over a time frame to allow finding similar mocap
sequences based on pose and viewpoint;

• Another example of human motion prediction us-
ing deep learning LSTMs is presented in (Mar-
tinez et al., 2017);

• A slightly different application but still related
to human motion prediction is the multi-people
tracking system presented by (Fabbri et al., 2018),
where the authors developed a system capable
of extracting information of people body parts
and temporal relations regarding the subjects’ mo-
tions. In this work, the system automatically de-
tects each human figure and respective skeletal in-
formation from frames of video recordings, even
if partially occluded, by matching those with a
database of body poses.

The common point between all the related works
presented here is that, despite the fact they studied
automatic approaches to identify human motion from
motion capture data, none of them focused on la-
belling the data in order to facilitate future queries and
content retrieval, which seems to remain an unsolved
problem.

4 EXPERIMENTATION

In this section its described the experiments made
with LSTM networks implemented using Python
and Keras (https://keras.io/) with Tensorflow
(https://www.tensorflow.org/) using the afore-
mentioned data set built upon the CMU Motion Cap-
ture Library.

4.1 Ontology of Human Actions

Since the scope of this work focuses only on tagging
motion capture actions, instead of designing a com-
plete ontology for every possible creative media an
animation studio would be interested in cataloging,
we opted to simplify the representation to consider
only a selected set of human actions.

We are using the freely available CMU Motion
Capture library (CMU Graphics Lab, 2018) for our
experiments. Thus, the list of actions our system is
able to classify reflects the actions available in this
database.

In our experiments we considered the follow-
ing actions: bending down, climbing, dancing,
fighting, jumping, running, sitting down,
standing up, and walking.

The definition of this ontology is important be-
cause training the neural network to recognize its
classes means that it needs a carefully designed data
set of mocap files for each class. Our training data
set is composed of 1136 files divided into those 9 cat-
egories, representing more than 820,000 frame sam-
ples.

4.2 Data Representation

There are two main concerns in terms of representing
data for a neural network: how to represent the input
(or training) data and how to represent the output (in
our case the labels of each class in the ontology).

For the input, we followed the data representation
presented at (Bütepage et al., 2017), where each
frame of a mocap recording is represented in the
Cartesian space of each joint’s rotational data plus
the positional data for the ‘Hips’, thus resulting in
an 1D-array of size 3 × N joints + 3 where N joints
is the number of joints. Still agreeing with the
authors, we normalized all joint’s rotational angles,
centering the skeleton at the origin. So, each joint
data is represented according to the following for-
mat: <Joint> ZRotation, <Joint> YRotation,
<Joint> XRotation, e.g. LeftUpLeg Zrotation,
LeftUpLeg Yrotation, LeftUpLeg Xrotation.

Except for the Hips that also include the XYZ
positional values.

Several tests have been performed with the size of
the sample, i.e. the number of frames (N f rames), and a
comparative of the results is presented in Section 4.5
below.

Regarding the output, each possible outcome is
represented as a classical ‘one-hot’ binary string,
where the number of bits relates to the size of the
ontology (number of classes) and each label having
a different bit highlighted. For instance, since we
have 9 different labels in the ontology, the first la-
bel “bending down” is represented by the sequence
100000000.

These representations also influence the size of the
first and last layers of the network as described in Sec-
tion 4.4.

4.3 Class Prediction

Since we opted to split the training samples into sub-
sets of N f rames frames, we had to do the same with our
working data set for consistency. Thus, each motion
capture file being analyzed is also split into samples
of the same size, and each sample is then submit to the
network for prediction. As a sample can be matched
with different classes, in the end the resulting class is
obtained by taking the mode of the class prediction
array, i.e., considering the most frequent label as the
answer .

This approach has the advantage of classifying
each file in terms of how likely that file belongs to
a given class of the ontology, thus allowing for mul-
tiple interpretations of its content, much like how it
would happen in a real scenario. Consider a record-
ing where the actor starts running in preparation for a
jump. Imagine now an animator searching for either
‘run cycles’ or ‘types of jump’, the system should be
able to understand that the particular file would be a
suitable response in either case.

4.4 Implementing a LSTM

As mentioned before, we opted to implement the pro-
totype for our tool in Python using Keras with Ten-
sorflow. The main reason for this choice was due to
the simplicity that these tools offer, making it more
adequate for quick prototyping.

The solution that was used for the experiments
discussed in this paper rely on three layers : the first
one (the input layer) is a LSTM layer of 15 neu-
rons. This value was chosen arbitrarily based on sev-
eral tests and can be modified to fit different needs
like for instance, different skeletal structures or com-

putational performance, the second layer is a similar
LSTM layer (stacked LSTM layer) with the sole pur-
pose of increasing depth of the network (our experi-
ments showed that deeper networks can perform bet-
ter while predicting lengthier animations), and finally,
the third layer (the output) is the one responsible for
encoding the predicted outcome to one of the classes
in the ontology as described in previous sections.

It is important to notice that although the size of
the input layer does not necessarily need to match the
size of the input data, the output layer does need to
match the size of the output, i.e., the number of pos-
sible labels that can be outputted.

Listing 1: LSTM implementation in Keras
1 nNeurons = 15
2 numLabels = 9
3 s a m p l e S i z e = 5
4 d s S i z e = l e n (t r a i n i n g D a t a S e t)
5 n J o i n t s = 38
6 dsShape = (sampleS ize , n J o i n t s ∗ 3)
7
8 model = S e q u e n t i a l ()
9 model . add (LSTM(nNeurons , r e t u r n s e q u e n c e s = True ,

10 i n p u t s h a p e = dsShape))
11 model . add (LSTM(nNeurons))
12 model . add (Dense (numLabels , a c t i v a t i o n = ’ so f tmax ’))
13 model . compi le (l o s s = ’ mse ’ , o p t i m i z e r = Adam(l r = 0 .001) ,
14 m e t r i c s = [’ a c c u r a c y ’])
15 model . summary ()

4.5 Preliminary Results

Several experimental tests have been performed with
our tool covering different network architectures and
several subsets of the ontology. In our experiments,
as a way to better assess the accuracy of the model.
We prepared a series of motion capture files carefully
editing their content to portray only a single action per
file.

In this section, we describe three of such experi-
ments:

1. We performed a series of 5 predictions with the
model considering all 9 categories. Our prediction
data set in this case was composed by 54 files (6
for each category);

2. Later, a subset containing only the four larger
classes data sets have been considered for a sec-
ond round of predictions, and the results are pre-
sented next in Section 4.5.2;

3. Finally, the previous experiments’ results showed
that the despite the differences in size of the train-
ing data sets, four specific classes appeared to
have been better modeled by the network, so we
decided to performed a third round of predictions
using only these four ones. The results for these
are presented in Section 4.5.3.

4.5.1 Experiment # 1

Table 1 summarizes the results obtained from these
predictions for the first trial. It’s important to notice
that the larger the size of the sample, the lower the
amount of samples, although temporal relations are
better represented.

Table 1: First experiment accuracy results considering dif-
ferent page size and all 9 labels of the ontology

Figure 4 shows the confusion matrix we obtained
by taking, as an example, the best result in our ex-
periment (the one where sample size = 10). In this
experiment we can clearly see as the darker regions
of the matrix, that some of classes like ‘jumping’
or ‘walking’ has been better learned by the network
than other classes.

Figure 4: Confusion matrices for the predictions consider-
ing sample size = 10 (on the left) and the overall result after
combining all 5 predictions (on the right)

These results were indicating that the network
was underperforming while predicting some of the
classes, most likely due to the problem of underfitting
(Brownlee, 2018) since the size of the training data set
for each category varies significantly (the smaller data
set corresponds to 31% the size of the largest one).

4.5.2 Experiment # 2

In order to try to minimize these effects, a sec-
ond round of predictions have been performed
considering only the four larger data sets avail-
able: bending down, dancing, standing up,
walking where each of them have more than 100,000
frames, changing the ratio between the smaller and
larger data sets to 76%.

The results obtained on this second round of pre-
dictions are presented in Table 2 below. They are
evidence that the low accuracy detected in the first
experiment was due to underfitting the model, which
means that with a larger training data set the network

should perform better even when considering larger
ontologies.

Table 2: Accuracy results after second experiment that con-
sidered only the four larger training data sets

Once more, taking the best result as an example,
calculating the confusion matrix for the experiment
resulted in Figure 5. Here the results were signif-
icantly better relatively to the previous experiment.
This can be observed considering that the values in
the main diagonal of the matrix are higher than the
rest of the matrix (ideally a confusion matrix would
appear as an identity matrix).

Figure 5: Confusion matrices for the predictions consider-
ing sample size = 20 and the four larger training data sets
(on the left) and the overall result after combining all 5 pre-
dictions (on the right)

Although the results after this experiment repre-
sented an improvement in regard to the last experi-
ment, they still were not as good as one could expect.
After a careful analysis of the confusion matrices ob-
tained after the combined results for each experiment,
it was noticeable that a specific set of classes were
performing better despite the fact those were not the
larger data set at disposal. Figure 4 on the right show
this combined matrix where it is possible to infer
this alternative four classes of preference: “bending
down”, “jumping”, “running” and “walking” as the
four ones showing the most promising results.

Next section present the results for the third exper-
iment considering exactly these four classes. Worth
noticing that these data sets have significantly differ-
ent training data set sizes and still the network were
able to train satisfactorily in them. We hypothesize
that this is due the nature of those specific actions that
significantly vary from each, making it simpler for the
network to differentiate them from each other.

4.5.3 Experiment # 3

In this experiment all training data set was composed
of 903 files, separated into four categories: “bending

down”, “jumping”, “running” and “walking” and the
prediction data set containing 24 files.

Table 3: Accuracy results after third experiment

This was the most successful experiment of them
all and the results clearly demonstrate the feasibility
of the model and allow us to conclude that the other
experiments would also perform better if more train-
ing would be available.

Figure 6 below depicts the results for the best ex-
periment performed under the described conditions
(size = 15) and also the resulting obtained by com-
bining all five experiments with this ontology.

Figure 6: Confusion matrices considering sample size = 15
and four selected labels (on the left) and the overall result
of the experiment on the right

4.5.4 Summary

Figure 7 compares the accuracy (vertical axis) ob-
tained with the experiments using different sample
sizes (horizontal axis). In orange it is shown the pre-
dictions considering all 9 categories, in blue the pre-
dictions using a subset containing only the four larger
data sets and in gray the experiment selecting the four
most successfully recognized in the first experiment.

Figure 7: Comparison between the results of the three ex-
periments

In summary, the results obtained with these ex-
periments can be considered promising, indicating the
viability of the model, showing that a stacked LSTM
neural network can successfully learn how to classify

human actions from motion capture data (proof-of-
concept).

4.6 Limitations

• Right now our system has the limitation of only
using CMU library skeleton structure (Figure 3),
which means that all training files and prediction
data have to have the same length (N joints). A
more generic approach that shall consider retar-
geting different skeleton structures into a baseline
model, thus allowing using multiple representa-
tions together is under development;

• Also, another limitation regarding data is the fact
that we are constrained to the size of the train-
ing data set available for experimentation. So, the
results that have been obtained reflect that. Al-
though, the significant improvement the second
experiment showed relatively to the first, make us
confident that this, at least, indicates the feasibil-
ity of the model and that, with larger databases,
the system should perform much better in terms
of accuracy classifying the data thus solving the
underfitting problem;

• Allowing recognition of other features from the
motion captured data, such as affective body pos-
tures (Kleinsmith et al., 2011), and gestures, e.g.
a ‘happy walk’ or a ‘sad handshake’. This feature
would be of the most importance when trying to
retrieve creative content that involves digital ac-
tors (pantomime) and crowd simulations;

• Extending the ontology in a way that would allow
developing automatic recognizers for any other
type of media related to the creative process in a
studio.

5 CONCLUSIONS

Finding new (more efficient) ways of authoring
creative content is a feature that interest the most to
companies in this sector. This work aims at studying
ways of improving productivity by reducing time and
effort authoring new animations by reusing older me-
dias into new projects. Since the volume of material
produced by such companies can be extremely large,
cataloging old ‘assets’ to facilitate tag-based searches
for future reference is a key aspect when dealing with
problems of this nature.

In this project, we are interested in developing
a tool for automatic classification of motion capture
content in terms of the actions the actor is perform-
ing, like walking, running, jumping, etc.

We designed a system that relies on deep learn-
ing, more specifically on long short-term memory
(LSTM) neural networks, to analyze the content of
motion capture files in BVH format and classify it
according to labels defined by a simplified ontology
composed of 9 action tags.

Our approach considered a separate data set of
carefully edited mocap files for training the network
on how to recognize each action. These data sets were
adapted from the freely available CMU Motion Cap-
ture Library. After training, the network was tested
using a different set of files that did not have been
used during training. For the sake of assessment, each
of these files were manually annotated with the ex-
pected label.

Comparing the results obtained by the classifica-
tion software against the expected manually annotated
tags, the system showed, in several of the tests, an ac-
curacy in some cases better than 95%, what can indi-
cate that the original hypothesis have been satisfied.

For the future, it’s expected to improve training
by adding other actions to the ontology like, for in-
stance, considering affective body postures and/or
other kinds of medias that might be of interest in a
production pipeline like textures, sounds, etc.

The ultimate goal would be to design an extend-
able modular content annotator capable of annotating
with different types of medias, based on a general-
purpose ontology.

Another possible application that might gain from
this automatic motion capture action recognition tech-
nology is authoring character animations for the pur-
pose of retargeting crowd behaviors to different sce-
narios. In theory, such an AI system could help under-
standing each character’s movements in a given situ-
ation and then help adapting the animations to new
target scenarios, and facilitate authoring crowd simu-
lation.

Acknowledgment

This publication has emanated from research sup-
ported in part by a research grant from Science
Foundation Ireland (SFI) under the Grant Number
15/RP/2776 and in part by the European Unions Hori-
zon 2020 Research and Innovation Programme under
Grant Agreement No 780470.

REFERENCES

Brownlee, J. (2018). Long Short-Term Memory Networks
with Python - Develop Sequence Prediction Models
With Deep Learning. Machine Learning Mastery.
[eBook].

Bütepage, J., Black, M. J., Kragic, D., and Kjellström,
H. (2017). Deep representation learning for hu-
man motion prediction and classification. CoRR,
abs/1702.07486. http://arxiv.org/abs/1702.
07486.

CMU Graphics Lab (2018). CMU graphics lab motion cap-
ture database. http://mocap.cs.cmu.edu/.

Delbridge, M. (2015). Motion Capture in Performance -
An Introduction. Palgrave Macmillan UK, first edition
edition.

Du, Y., Wong, Y., Liu, Y., Han, F., Gui, Y., Wang, Z.,
Kankanhalli, M., and Geng, W. (2016). Marker-less
3D human motion capture with monocular image se-
quence and height-maps. In European Conference on
Computer Vision, pages 20–36. Springer.

Fabbri, M., Lanzi, F., Calderara, S., Palazzi, A., Vezzani,
R., and Cucchiara, R. (2018). Learning to detect
and track visible and occluded body joints in a vir-
tual world. CoRR, abs/1803.08319. http://arxiv.
org/abs/1803.08319.

Gupta, A., Martinez, J., Little, J. J., and Woodham, R. J.
(2014). 3d pose from motion for cross-view action
recognition via non-linear circulant temporal encod-
ing. In 2014 IEEE Conference on Computer Vision
and Pattern Recognition, pages 2601–2608.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-
term memory. Neural Computation, 9(8):1735–1780.
D.O.I.: 10.1162/neco.1997.9.8.1735, https://doi.
org/10.1162/neco.1997.9.8.1735.

Kleinsmith, A., Bianchi-Berthouze, N., and Steed, A.
(2011). Automatic recognition of non-acted affective
postures. Trans. Sys. Man Cyber. Part B, 41(4):1027–
1038. D.O.I.: 10.1109/TSMCB.2010.2103557.

Martinez, J., Black, M. J., and Romero, J. (2017). On
human motion prediction using recurrent neural net-
works. CoRR, abs/1705.02445. http://arxiv.org/
abs/1705.02445.

Menache, A. (2011). Understanding Motion Capture for
Computer Animation. Morgan Kaufmann, second edi-
tion edition.

SAUCE Project (2018). Smart asset re-use in creative en-
vironments - SAUCE. http://www.sauceproject.
eu.

Tekin, B., Rozantsev, A., Lepetit, V., and Fua, P. (2016). Di-
rect prediction of 3d body poses from motion compen-
sated sequences. In 2016 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages
991–1000.

Toshev, A. and Szegedy, C. (2014). Deeppose: Human pose
estimation via deep neural networks. In The IEEE
Conference on Computer Vision and Pattern Recog-
nition (CVPR).

