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Abstract: This paper presents an approach to upsampling point cloud sequences captured through a wide baseline camera
setup in a spatio-temporally consistent manner. The system uses edge-aware scene flow to understand the
movement of 3D points across a free-viewpoint video scene to impose temporal consistency. In addition
to geometric upsampling, a Hausdorff distance quality metric is used to filter noise and further improve the
density of each point cloud. Results show that the system produces temporally consistent point clouds, not
only reducing errors and noise but also recovering details that were lost in frame-by-frame dense point cloud
reconstruction. The system has been successfully tested in sequences that have been captured via both static
or handheld cameras.

1 Introduction

Recent years have seen a spike in interest towards
virtual/augmented reality (VR/AR), especially at con-
sumer level. The combined maturity and affordability
is reducing the barrier to entry for content creators and
enthusiasts alike. As a result, it has become largely
apparent that there is a need to close the content cre-
ation gap, specifically with respect to the capture and
reconstruction of live scenes and performances.

Free-viewpoint video (FVV) technology provides
the necessary tools for creators to capture and dis-
play real-world dynamic scenes. Current state-of-
the-art systems usually feature large arrays of high-
resolution RGB cameras and IR depth sensors in a
professional studio environment (Collet et al., 2015;
Liu et al., 2010). These systems normally operate on
a frame-by-frame basis, where they compute a dense
point cloud using different multi-view stereo (MVS)
techniques. With such high-density camera config-
urations, temporal inconsistencies in the 3D recon-
structions are less conspicuous. However, these sys-
tems are likely to be inaccessible to low-budget pro-
ductions and independent content creators. New ap-
proaches are emerging that enable FVV capture us-
ing wide-baseline camera setups that include only
consumer-grade cameras, some of which can even
be handheld (Pagés et al., 2018). However, frame-
by-frame reconstructions (Mustafa et al., 2015) of-
ten include temporal artifacts in the sequence. This

is most often due to common fail case scenarios for
photogrammetry-based systems such as a lack of tex-
ture information or attempting to reconstruct non-
lambertian surfaces. In the absence of any spatio-
temporal constraints, it can be observed that salient
geometric features can become distorted and tempo-
rally incoherent across FVV sequences. Figure 1
demonstrates such an example as frame-wise re-
construction suffers a loss of geometric information
where the reconstruction system failed to identify
enough feature points to guarantee an accurate re-
construction, specifically in extremities such as hands
and feet. Temporal inconsistencies can also be ob-
served between frames in the form of structured noise
patches and holes in the model.

We propose a system that both, upsamples low
density point clouds, and also enforces a temporal
constraint which encourages the selective recovery of
lost geometric information. They key contributions of
our work can be summarised as follows:
• A spatio-temporal consistency system for point

cloud sequences that coherently merges consecu-
tive point clouds, based on estimation of the Edge
Aware Scene Flow on the original wide-baseline
images.

• A self regulating noise filter based on a Hausdorff
distance quality metric as the conditioning crite-
rion of the coherent mesh.
As a baseline for improvement we compare this

proposed method to temporally-incoherent alterna-



Figure 1: Four frames from a typical FVV sequence. These
unprocessed results show inconsistencies and noise due to
occlusions, fast-moving elements and sparse feature detec-
tion. Some temporally-inconsistent structured noise patches
can be observed also. Our system implements spatio-
temporal consistency which aims to remove the majority of
structured noise patches as well as recovering some lost ge-
ometry leading to a more temporally coherent result.

tives whereby point cloud densification is achieved
solely by geometric upsampling.

2 Related Work

Spatio-temporal consistency has been widely ad-
dressed by modern FVV systems and dynamic recon-
struction algorithms. The addition of this consistency
ensures the reconstruction of smooth and realistic se-
quences with minimal temporal artifacts. However,
most techniques apply a registration-based temporal
constraint to the final 3D meshes, and not in the early
processing stages (Huang et al., 2014; Klaudiny et al.,
2012). These techniques normally use some varia-
tion of non-rigid ICP (Li et al., 2009; Zollhöfer et al.,
2014), such as the coherent drift point algorithm (My-
ronenko and Song, 2010). An example of this has
been demonstrated in the work by Collet et al. (Col-
let et al., 2015): they apply mesh tracking in the final
processing stage, not only to provide a smoother FVV
sequence but also to improve data storage efficiency
as, between keyframes, only the vertex positions vary
while face indices and texture coordinates remain the
same. However, they do not apply temporal coher-
ence in any other stage of the process, mainly because
their system uses 106 cameras (both RGB and IR) in
a studio environment and the resulting dense point
clouds are very accurate on a frame-to-frame basis.
Another technique has been proposed by Mustafa el
al. (Mustafa et al., 2016), where they ensure tempo-
ral coherence of the FVV sequence by using sparse
temporal dynamic feature tracking, as an initial stage,
and also in the dense model, using a shape con-
straint based on geodesic star convexity. However,
these temporal features are used to initialize a con-

straint which refines the alpha masks used in visual-
hull carving and are not directly applied to the input
point cloud. The accuracy of these methods are again,
highly influenced by the density of viewpoints and
baseline width. Furthermore, this constraint is applied
at a refinement stage and so the initial point cloud is
still temporally unrefined before the poisson mesh has
been generated. Other techniques address temporal
coherence by trying to find an understanding of the
scene flow to recover not only motion, but also depth.
Examples of this are the works by Basha et al. (Basha
et al., 2013) and Wedel et al. (Wedel et al., 2011).
However, these techniques require a very precise and
dense motion estimation for almost every pixel in or-
der to acquire accurate depth maps and cameras con-
figured with a very narrow baseline. In our system, we
use the temporally consistent flow proposed by Lang
et al. (Lang et al., 2012) which we apply to multi-
view sequences, allowing us to track dense point
clouds across the sequence even when we use cameras
with a wide baseline. While not specifically targeting
FVV systems, there is a well-established state of the
art for improving general 3D reconstruction accuracy
via point cloud upsampling or densification (Huang
et al., 2013; Wu et al., 2015; Yu et al., 2018). How-
ever, given that these systems are designed to perform
upsampling for a single input point cloud, they are
unable to leverage any of the temporal information
within a given sequence of point clouds. As a result,
the use of such techniques alone will still suffer from
temporally incoherent noise. Our system takes ad-
vantage of the geometric accuracy of the state of the
art Edge-Aware Point Set Resampling technique pro-
posed by Huang et al. (Huang et al., 2013) and sup-
ports it using the temporal information obtained from
the inferred 3D scene flow along with some spatio-
temporal noise filtering. This is performed with the
rationale that increasing the density of coherent points
improves the accuracy of point cloud meshing pro-
cesses such as Poisson Surface Reconstruction (Kazh-
dan and Hoppe, 2013).

3 Methodology

3.1 Point Cloud Reconstruction &
Edge-Aware Upsampling

The input to our system is a temporally-incoherent
FVV point cloud sequence captured using an afford-
able FVV pipeline similar to the system proposed
by (Pagés et al., 2018). The target scene is cap-
tured across a setup of multi-view videos spanning



Figure 2: Temporally-Coherent upsampling and filtering: system overview. The system input is the framewise-independent
point cloud sequence as well as the RGB images and calibration parameters used to generate it. The system upsamples the
input point cloud for a given timeframe j, then calculates the edge-aware scene flow to project the upsampled cloud into
timeframe j+1. The final output is the result of a temporally-coherent merging and filtering process which retains upsampled
geometric information from the previous frame as well as pertinent data from following frame.

wide baselines with known camera intrinsics. Ex-
trinsics are automatically calibrated using sparse fea-
ture matching and incremental Structure from Mo-
tion (Moulon et al., 2012). When the cameras are
handheld, other more advanced techniques such as
CoSLAM (Zou and Tan, 2013), can be used to es-
timate their position and rotation. At every frame,
a point cloud is initially calculated using structure
from motion and densified using multi-view stereo.
For instance, the examples shown in this paper use
a denser sparse point cloud estimation proposed by
Berjón et al. (Berjón et al., 2016), which is later den-
sified even further using the unstructured MVS tech-
nique proposed by Schönberger et al. (Schönberger
et al., 2016). Formally, we define S = {si=1, ...,sm}
as the set of all m video sequences, where si( j), j ∈
{1, ...,J} denotes the jth frame of a video sequence
si ∈ S, with J frames. Then for every frame j, there
will be an estimated point cloud P j. In a single itera-
tion, P j is taken as the input cloud which is upsam-
pled using Edge-Aware Resampling (EAR) (Huang
et al., 2013). This initializes the geometry recovery
process with a densified point cloud prior which will
be temporally projected into the next time frame j+1
and geometrically filtered to ensure both temporal and
spatial coherence. Figure 2 presents an overview of
the proposed pipeline following the acquisition pro-

cess in which we present our temporally-coherent fil-
tering and upsampling algorithm.

3.2 Spatio-Temporal Edge-Aware Scene
Flow

We use a pseudo scene flow in order to project as
much pertinent geometry from the previous frame as
possible. In the context of the proposed system, scene
flow is defined as an extension of 2D optical flow to
include depth information and provide a framework
for tracking point clouds in 3D. Dense scene flow in-
formation is generated by computing the 2D optical
flow for each input video, thus, for every sequence si
we compute its corresponding scene flow fi. This ap-
proach of accumulating multiple 2D flows ensures a
robustness to wide-baseline input in as each input is
calculated independently.

To retain edge-aware accuracy and reduce additive
noise we have chosen a dense optical flow pipeline
that guarantees spatio-temporal accuracy:
• Initial dense optical flow is calculated from the

RGB input frames using the Coarse to fine Patch
Match(CPM) approach described in (Hu et al.,
2016).

• The dense optical flow is then refined using a



Table 1: Effect of STEA filter initialization on geometry
recovered expressed as % increase in points. Tested on a
synthetic ground-truth sequence. Flow algorithms tested:
Coarse-to-Fine Patch Match (CPM) (Hu et al., 2016), Fast
Edge-Preserving Patch Match (FEPPM) (Bao et al., 2014),
Pyramidial Lukas-Kanade (PyLK) (Bouguet, 2001) and
Gunnar-Farnebäck (FB) (Farnebäck, 2003).

STEA Initialization Area Increase (%)

CPM 37.73
FEPPM 34.9
PyLK 34.77
FB 29.7

spatio-temporal edge aware filter based on the Do-
main Transfer (Lang et al., 2012).

The CPM optical flow is used to initialize a spatio-
temporal edge aware (STEA) filter which regularizes
the flow across a video sequence, further improving
edge-preservation and noise reduction.

While the STEA can be initialized with most
dense optical flow techniques such as the popular
Gunnar-Farnebäck algorithm (Farnebäck, 2003), the
given initialization is less sensitive to temporal noise
and emphasizes edge-aware constraints at input, thus
producing more coherent results. We analysed other
approaches from the state-of-the-art and concluded
that they lack global regularization, edge-preservation
or are sensitive to large displacement motion. Table 1
demonstrates how initializing the filter with different
flow algorithms affects the geometry recovered by the
proposed algorithm.

The STEA filter is implemented as in (Lang et al.,
2012) which features an extension to the Domain
Transform (Gastal and Oliveira, 2011) in the spatial
and temporal domains using optical flow as a primary
application:

1. The filter is initialized as suggested in (Schaffner
et al., 2018), using coarse-to-fine patch match (Hu
et al., 2016). The CPM algorithm estimates opti-
cal flow as a quasi-dense nearest neighbour field
(NNF) using a subsampled grid.

2. The edges of the RGB input are then calcu-
lated using the Structure Edge Detection Toolbox
(Dollár and Zitnick, 2013).

3. Using the calculated edges, the dense optical flow
is then interpolated using Edge-Preserving In-
terpolation of Correspondences (Revaud et al.,
2015).

The interpolated dense optical flow is then fed into the
STEA filter as an optical flow video sequence where
it is filtered in multiple passes through the spatial and
temporal domains to reduce temporal inconsistencies

Figure 3: Pictured left to right, the STEA flow process-
ing pipeline: input RGB image from a given viewpoint,
(1) CPM nearest neighbour field estimate, (2) SED detected
edges, (3) interpolated dense STEA output. Conventional
colour coding has been used to illustrate the orientation and
intensity of the optical flow vectors. Orientation is indicated
by means of hue while vector magnitude is proportional to
the saturation i.e. negligible motion is represented by white,
high-speed motion is shown in highly saturated color.

and improve edge fidelity. An example of the STEA
processing pipeline can be seen illustrated in Figure 3.

3.3 Point Cloud Motion Estimation

Knowing the camera parameters (C j1 , ...,C jm , at the
jth frame), the set of scene flows ( f j1 , ..., f jm ), and
the set of point clouds (P j, ...,PJ), we can predict
how a certain point cloud moves across the sequence.
For this, we back-project every point Pk ∈ P j to each
flow fi at that specific frame j. To avoid the back-
projection of occluded points, we check the sign of
the dot product between the camera pointing vector
and the normal of the point Pk. Using the flow, we can
predict the position of the back-projected 2D points
pik in sequential frames, p′ik.

Therefore, the predicted point cloud P ′j, at frame
j+1, is the result of triangulating the set of predicted
2D points p′ik, using the camera parameters of frame
j+1. This is done by solving a set of overdetermined
homogeneous systems in the form of HP′k = 0, where
P′k is the estimated 3D point and matrix H is defined
by the Direct Linear Transformation algorithm (Hart-
ley and Zisserman, 2004). The resulting point un-
dergoes a Gauss-Markov weighted non-linear optimi-
sation which minimises the reprojection error (Luh-
mann et al., 2007).

3.4 Geometry-Based Filtering &
Reconstruction

The last step of the proposed system involves per-
forming a coherent merging of the predicted point
cloud and the target frame. This coherent merge uses
a Hausdorff distance-based quality metric to allow



Figure 4: A visual representation of the coherent merge
process. Pictured is the result of merging the predicted
point cloud (left) with the target cloud (middle) . All points
are color-coded with respect to the distance between their
nearest-neighbour match in the other cloud. Points labelled
hihger than the threshold for the given frame will be re-
moved from the merged result.

neighbouring geometry to persist and deform natu-
rally whilst also removing noise in an adaptive man-
ner. The Hausdorff distance threshold is computed
as the average resolution of the predicted and tar-
get point clouds reduced by one order of magnitude.
This constrains the threshold to be set at some small
distance relative to the point cloud resolution which
ensures that only pertinent points remain. Formally,
d j is the Hausdorff distance threshold between the
flow-predicted point cloud P ′j and the target sequen-
tial point cloud P j+1.

The coherent merged cloud P ∗j+1 is given by the
logical definition in equation 1.

Given an ordered array of values DP ′j such that
DP ′j(k) is the distance from point P j(k)′ to its indexed
match in P j+1. We also define DP j+1 as an array of
distances in the direction of P j+1 to P ′j. We then de-
fine the merged cloud to be the union of two subsets
M ⊂ P ′j and T ⊂ P j+1 such that,

M ⊂ P ′j ∀ P ′j(k) : DP ′j(k) < d j, k ∈ {1... j} ,

T ⊂ P j+1 ∀ P j+1(k) : DP j+1(k)< d j, k ∈ {1... j} ,
P ∗j+1 = M∪T

(1)
By this definition, P ∗j+1 contains only the points

in P j+1 and P ′j whose distance to their nearest neigh-
bour in the other point cloud is less than the com-
puted threshold d j. The intention of this design is
effectively to remove any large outliers and incoher-
ent points while encouraging consistent and improved
point density. Figure 4 shows an example of how the
coherent merge works.

3.5 Dynamic Object Point Validation

The result of the coherent merge, described in Sec-
tion 3.4, are the points upon which the input cloud and
the projected cloud agree. While this co-dependence

Figure 5: Filtered point clouds from two sequences, one
extracted from hand held cameras in outdoor setting (left)
and the other captured in a green screen studio (right). Both
show a comparison between the point cloud extracted from
framewise reconstruction (a), and the filtered results (b).

is well-suited to filtering noise, it fails to recover per-
tinent geometry that doesn’t happen to reside within
the distance threshold. In particular, faster-moving
objects tend to be trimmed as the overlap between
frames can be small. To further improve the recov-
ery of geometry we added a validation process which
considers a confidence value for projected points in
P ′j. Given that P ′j is a prediction for frame j+ 1, we
validate each predicted point by back-projecting P ′j
into the respective scene flow frames for time j + 1.
The average magnitude of the optical flow vectors for
each view of the given point is then used as a con-
fidence value for that point. In this way, points for
which a high flow magnitude exists in the sequential
frame can be considered dynamically tracked. A con-
fidence value proportional to the average scene flow
magnitude is applied as a weight to adaptively ad-
just the distance threshold d j for dynamically tracked
points. This allows for the retention of pertinent, fast-
moving geometry without hindering the performance
of the noise filter.

4 Results

Figure 5 shows a direct comparison between two
frames from two typical yet challenging FVV se-
quences. The performance of the system was eval-
uated qualitatively on sequences captured outdoors
using handheld devices (i.e. phone and tablet de-
vice cameras) and on sequences captured in a mod-
est green screen studio using 12 mounted (6 full HD
and 6 4K) cameras. A synthetic sequence was used to
evaluate the results on a quantitative basis. This se-
quence consists of a digitally created character placed
in a virtual environment with simulated cameras.



Figure 6: A selection of frames from a handheld outdoor
sequence. The RGB input from a single camera (top), the
result of poisson reconstruction on raw input (middle), the
result of poisson reconstruction on proposed method (bot-
tom).

4.1 Outdoor Handheld Camera
Sequences

Unique challenges arise from filtering point clouds
extracted from unstable cameras with a non-uniform
and dynamic background. Errors in the camera ex-
trinsics, differences in colour balance, and irregular
lighting conditions result in reconstruction errors: in-
consistency in the frame-by-frame reconstruction and
a significant amount of noise. An example of this
is shown in Figure 5 (left model): the figure shows
the difference between using framewise reconstruc-
tion (a) and our method (b). As can be seen, large
holes in the subject have been filled and most of the
undesirable noise has been filtered. However, while
the Hausdorff quality metric is able to remove most
of the noise, the system is still sensitive to structured
noise patches, typical of MVS reconstruction inaccu-
racies.

Figure 6 shows four non-consecutive frames for
another outdoor sequence shot on the same location.
In the top row, the input images from one of the hand-
held cameras. The second and third rows demonstrate
the result of applying Screened Poisson Reconstruc-
tion (PSR) (Kazhdan and Hoppe, 2013) to the result-

ing point clouds. The meshes shown are the result of
sampling the initial PSR-generated mesh with the in-
put point cloud to remove outlier vertices. As a result,
holes in the input point cloud become apparent in the
resulting mesh. This figure demonstrates the effect
of coherent point cloud upsampling on reducing the
perforations in the mesh.

4.2 Indoor Studio Sequences

The use of stabilized, high resolution cameras in a
green screen studio brings many advantages to fil-
tering the reconstruction such as more accurate flow
information and far less temporal noise. In order to
add an extra degree of challenge to this sequence an
additional and fast-moving dynamic object has been
added to the scene by having the subject volley a soc-
cer ball. While this setup enables the estimation of
compelling dense point clouds, the relatively sparse
camera array still suffers from occlusions, as demon-
strated when the ball crosses in front of the subject
(Figure 5, right model). Despite this, it can be seen
that similar to outdoor sequences, large portions of
the subject have been recovered while retaining the
fast-moving football.

4.3 Synthetic Data Sequences

In order to conduct a ground-truth analysis we have
performed an evaluation of our system using a syn-
thetic dataset. The dataset consists of a short 25
frame sequence in which a digitally created human
performs some dynamic motion against an other-
wise static background. In this dataset, 12 camera
views arranged in a 180◦ arc, with known parame-
ters, have been synthesized to provide the input multi-
view video sequences. We compare the result of
our system with the results of framewise reconstruc-
tions by meshing the output point clouds using PSR
and calculating their Hausdorff distance with respect
to the original model. Figure 9 illustrates the error
heatmap of the reconstructed mesh in the absence of
point cloud processing and following the proposed
temporally-coherent system. It can be seen that the
proposed coherent upsampling approach manages to
recover accurate geometry that would be otherwise
missing for the same frame.

As a baseline for comparison we have measured
the performance of our system against two frame-
wise reconstructions, SIFT+PMVS (Furukawa and
Ponce, 2010) and RPS (Pagés et al., 2018) as well
as some state of the art upsampling algorithms using
the RPS method as input; PU-Net (Yu et al., 2018)
and the Edge-Aware Resampling (Huang et al., 2013)



Figure 7: Results of applying PSR to resulting pointclouds. PSR is first applied and then the input cloud is used to clean the
resulting mesh by removing faces which exceed a given distance to any input vertices. All inputs were processed using the
same octree depth and distance threshold for cleaning.

Figure 8: A selection of the images used to generate syn-
thetic data for a ground-truth analysis of the fvv reconstruc-
tion system.

method. The comparison with RPS+EAR also func-
tions as an ablation study as this is used as the initial-
izer for the proposed system.

The results of Table 2 show improvement on the
compared methods but may also be hindered by the
synthetic nature of the test data. This is, in part, due
to the lack of natural noise that one would expect for
the equivalent real-world application. In such a sce-
nario where more temporally-incoherent structured
noise is more prominent it would be expected that
a further margin of improvement could be achieved.
We have provided Figure 7 as a qualitative demon-
stration of the margin of improvement achievable by
the proposed system when applied to noisy scenario.
It should also be noted that while the SIFT+PMVS
method demonstrates a more complete mesh, it is
largely contaminated with noisey data as evidenced
by the results of the quantitative study in Table 2.

4.4 Flow Initialization

The STEA filter described in section 3.2 is robust in
that it can be initialized using practically any dense
optical flow algorithm, but in order to retain spatial
accuracy with regards to point projection it requires
an appropriate selection. Table 1 shows the effect of
initialization using the chosen CPM method in com-
parison to popular alternatives. CPM demonstrably

Figure 9: Hausdorff distance with respect to the synthetic
model. On the left, using the result of a framewise recon-
struction. On the right, using our system. As the model is
synthetic, the units were scaled with respect to the bounding
box diagonal such that it’s length becomes 150cm.

out-performs the chosen alternatives due to its edge-
preserving application. While FEPPM (Bao et al.,
2014) uses an edge-preserving patch match and NNF
approach, cpm improves upon typical NNF field type
matching by adding global regularization.

5 Conclusions

It remains a challenge for amateur and low-budget
productions to produce FVV content on a compara-
ble scale with that of more affluent studios. Wide-
baseline FVV systems are likely to always be more
susceptible to inherent noise in the form of occlusions
and photogrammetry errors. While this noise presents
a difficult obstacle we have shown that it is often tem-



Table 2: Hausdorff error (mean and root mean square
(RMS)) comparison between reconstruction results and
ground truth synthetic dataset. Figures presented are ex-
pressed as % with respect to bounding box diagonal of the
ground truth.

Method Mean Error(%) RMS Error(%)

SIFT+PMVS 6.18 8.09
RPS 2.17 3.27
RPS + PU-Net 2.44 3.50
RPS + EAR 2.40 3.64
Proposed 1.78 2.72

porally incoherent and so it can be corrected by en-
forcing spatio-temporal constraints.

By leveraging the permanence of temporally co-
herent geometry, our system is able to effectively filter
noise while retaining pertinent geometric data which
has been lost on a frame to frame basis. By enforcing
this spatio-temporal consistency we demonstrate the
improvements that our system will have for modern
and future FVV systems alike.

We have shown that our system is suited to filter-
ing point clouds from both studio setups and hand-
held ”dynamic camera” outdoor scenes. Although
the effects are most appreciable for dynamic out-
door scenes in which there tends to be much more
noise, the advantage of more accurate flow informa-
tion demonstrates visible improvements for indoor,
studio-based sequences also. Some inherent limita-
tions exist in the amount of noise which can be filtered
whilst retaining important geometry, as is typical of
many signal-to-noise filtering systems. This is partic-
ularly evident in the case of fast moving objects but
our system alleviates this problem by using a dense
optical flow method with demonstrably good sensi-
tivity to large displacement as well as our proposed
dynamic object tracking constraint.

In comparison to temporally-naive geometric up-
sampling approaches we can see that supplying
spatio-temporal information leads to more accurate
results and provides tighter framework for seeding
geometric upsampling processes. This is confirmed
by the results obtained from the synthetic dataset test
whereby the most accurate approach was achieved by
spatio-temporal filtering of an edge-aware upsampled
point cloud.
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