
Deep Convolutional Neural Networks for estimating lens
distortion parameters

Sebastian Lutz†?, Mark Davey?, Aljosa Smolic†

†Trinity College Dublin ?Foundry

Abstract

In this paper we present a convolutional neural network (CNN) to predict multiple lens distortion
parameters from a single input image. Unlike other methods, our network is suitable to create high
resolution output as it directly estimates the parameters from the image which then can be used to
rectify even very high resolution input images. As our method it is fully automatic, it is suitable for
both casual creatives and professional artists. Our results show that our network accurately predicts
the lens distortion parameters of high resolution images and corrects the distortions satisfactory.

Keywords: Camera calibration, lens distortion, CNN, deep learning

1 Introduction

In professional photography and cinematography, the choice of camera lens is very important, mostly for
artistic reasons. Wide angle lenses, for example, are often used for landscape shots to capture as much
of the scene as possible, while lenses with much higher focal length are typically used for portraits.
All lenses introduce different amounts of lens distortion to the image and it can be important to change
the amount of lens distortion in an image after it has been taken, e.g. in Computer-generated imagery
(CGI) work. In professional production, lens distortion parameters corresponding to a lens distortion
model are often estimated from imaging a known grid, e.g. a checkerboard, before the actual capture.
Post-production software then allows straightening out the curved lines in the images. However, this
necessary step is often forgotten or impractical and it becomes much more difficult to rectify a distorted
image without this information. Still professional software provides tools to do that, but it remains a
cumbersome interactive procedure. An automatic solution would help reducing costs. Additionally,
many computer vision algorithms, e.g. pose estimation and 3D reconstruction, depend on the assump-
tion of the ideal pinhole camera model [Hartley and Zisserman, 2003]. If applied in automatic systems
these often require automatic lens distortion correction.
Our motivation in this paper is therefore to devise a convolutional neural network to automatically esti-
mate the distortion parameters of an image. These can then be used to easily rectify any image or shot
with the same camera and lens combination.
Our contribution is the first convolutional neural network to estimate multiple lens distortion param-
eters corresponding to Fitzgibbon’s division model [Fitzgibbon, 2001], which corresponds to the de-
fault model that is used in NUKE [Foundry, 2007], the premier compositing tool for professional post-
production. We deliberately chose to design the network to estimate the parameters directly instead of
outputting a rectified image of the input, to seamlessly integrate this method into NUKE and allowing
it to work even for the ultra-high-resolution images that are used in professional movie production. Our
results show the suitability of our CNN method on a range of images.



2 Related work

We formulate the estimation of lens distortion parameters as a regression problem. Regression is very
common in computer vision and there are many similar problems in the field [Fanelli et al., 2011],
[Burgos-Artizzu et al., 2013], [Sun et al., 2012].
There has also been done a lot of research on lens distortion itself. Important for this paper is espe-
cially the work of Fitzgibbon et. al. [Fitzgibbon, 2001], who defines the lens distortion model that we
are using in this paper and which will be explained in more detail in section 3. To rectify distorted
images, there are several works that use lines for the estimation [Melo et al., 2013], [Mei et al., 2015],
[Bukhari and Dailey, 2013]. They essentially aim to estimate the distortion that caused straight lines to
appear curved in the image. Similar in aim to our work, Bukhari et. al. [Bukhari and Dailey, 2013] use
an extended Hough transform of image lines to estimate one radial lens distortion parameter. Rong et.
al. [Rong et al., 2016] aim to do the same, but use a CNN to estimate one lens distortion parameter from
an input image. However, they only estimate the first lens distortion coefficient, whereas our model
includes more coefficients and also estimates the center of the distortion. There has also been some
research done on estimating the parameters for fish-eye lenses. Yin et. al. [Yin et al., 2018] developed a
network to rectify fish-eye images. Instead of estimating the distortion parameters, they output the final
rectified image directly. We find this approach not suitable for high-quality images, since the images
would have to be scaled down to fit into the network and the final network output would have to be
upscaled afterwards, leading to a loss in quality.

Barrel distortion Pincushion distortion

Figure 1: Two types of common lens distortion types. To the left: Barrel distortion. This type folds the
image inwards and introduces black regions on the outside where image information is missing. To the
right: Pincushion distortion. This type expands the image outwards and the outer edges of the image
disappear.

3 Lens distortion model

The lens distortion model that is used in this work and also as the standard model in NUKE [Foundry, 2007]
is the division model introduced by Fitzgibbon [Fitzgibbon, 2001]. The division model is written as:

xnew ˘ cx ¯ x̂

1 ¯ k1 ⁄ r 2 ¯ k2 ⁄ r 4 ¯ . . .

ynew ˘ cy ¯ ŷ

1 ¯ k1 ⁄ r 2 ¯ k2 ⁄ r 4 ¯ . . .

(1)

where cx and cy are the center coordinates for the distortion, k1,k2, . . . are the distortion denomina-
tors, x̂ ˘ xol d ¡ cx and ŷ ˘ yol d ¡ cy are the pixel coordinates corrected for the center of the distortion,
and r 2 ˘ x̂2 ¯ ŷ2 is the radius of the coordinates from the center of the distortion. All coordinates are
normalized such that the top-right pixel in a square image has the coordinate (1,1) and the bottom-left
pixel the coordinate (¡1,¡1). The above equation is used to apply a distortion on an undistorted image.



Depending on the distortion coefficients, this can lead to a number of distortion effects. Generally, one
distinguishes between barrel distortion and pincushion distortion, as can be seen in figure 1. The reverse
transformation, i.e. correcting a lens distortion effect on an image to straighten it out is unfortunately
less straightforward and Newton’s method has to be used to iteratively undistort the image.

To date correction of lens distortions is an interactive process in professional production. Automatic
computer vision systems typically apply pre-defined lens distortion parameters which may be inaccurate.
Interactive methods for instance require an image of a checkerboard grid that fills at least the biggest
part of the image. The algorithm automatically finds the corners in the checkerboard and finds the lines
connecting them. In the distorted image, these lines will appear curved and the algorithm will estimate
the correct lens distortion parameters by straightening out those curved lines. Similarly, interactive post-
production software such as NUKE, provides tools to indicate curved lines in images, which can then
be used to estimate distortion parameters causing them.

4 Method

Our network takes a RGB image of arbitrary aspect ratio and a maximum size of 512 £ 512 as input and
outputs the estimated coordinates of the distortion center, as well as the distortion denominators of the
division model. It was a conscious design decision not to let the network undistort the image such as
in [Yin et al., 2018], but to estimate the parameters directly so that they could be used in NUKE. This
allows for seamless integration of the network into a NUKE node graph and allows for high-quality
undistortions of even very large images that would not have fit into the network.

4.1 Network

The network architecture of our model is similar to the architecture of other models aimed to solve
computer vision regression tasks [Lathuilière et al., 2018]. The network uses Xception [Chollet, 2017]
as a convolutional backbone to extract dense feature maps from the input RGB image. To add more
spatial information, these feature maps are then multiplied by an equal sized feature map that contains
the squared radial distance of each element from the center of the feature map. This is equivalent to a
weighting method that prefers elements on the borders of the feature maps to those in the center. There-
fore, elements on the border, where the lens distortion effects are strongest, have more impact on the
following layers.
To reduce the number of elements in the dense feature maps, two convolutions, followed by batch nor-
malization respectively, with kernel size of 1 and stride of 2 are used to reduce the spatial size of the
feature maps by a factor of 4 and the number of channels from 2048 to 512.
These final feature maps are then flattened and followed by two branches of fully-connected layers.
While one branch estimates the the center coordinates of the distortion, the other one estimates the dis-
tortion denominators. Structurally both branches are the same and consist of one fully-connected layer
with 256 neurons followed by one last fully-connected regression layer to estimate the final parameters.
All convolution layers and all fully-connected layers except the last one are followed by ReLU activation
functions. A diagram of our network architecture can be seen in figure 2.

4.2 Data

To train our network, we create a dataset of lens distorted images with known distortions by applying
random parameters to a large set of images, which are assumed initially undistorted. As input we use
the very large MSCOCO [Lin et al., 2014] dataset. This is not quite optimal, since we actually do
not know any of the parameters of cameras and lenses that was used to take any of the images in the
dataset. Nevertheless, we consider the images properly undistorted and use on-the-fly data augmentation
to distort them according to the division model using a random selection of parameters. This is done
through our tensorflow [Abadi et al., 2015] implementation of the division model directly on the GPU.



Figure 2: Network architecture.

Before the random distortion, all images are resized to 1024 on their longest size and the images are
slightly zoomed in after the random distortion to remove any black borders that could have appeared
due to a barrel distortion. This prevents the network to overfit on any curved image borders since those
would not appear in real images. Finally, we add a small amount of random noise to the image and
resize it so that it longest size is 512 pixels while padding the smaller side with black on both sides. This
is done to prevent further overfitting on image artifacts that could appear due to the random distortion.
The final batch of images sent to the network are square of size 512 £ 512 and are normalized to have
values within [¡1,1].

4.3 Training details

We train our network using the dataset created as described above. For that, we initialize the network
weights of the Xception convolutional backbone with pretrained Imagenet [Deng et al., 2009] weights.
We also set the layers of the Xception entry flow to not trainable to reduce the amount of memory on the
GPU the training takes. This allows for a bigger batch size of 16 and allows for faster training.
During the development of the network, we tried a variety of loss functions, but in the end, we found the
standard mean squared error loss to work the best. We further used the Adam optimizer [Kingma and Ba, 2014]
with a learning rate of 0.01.




