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Supplementary Material: Deep Tone Mapping
Operator for High Dynamic Range Images

I. INPUT HDR
In this paper, we feed the network with input HDR scaled

with high precision [0,1] range. However, before adopting the
simplistic scaling, we performed an experimental study using
different normalization strategies to study the effect on tone
mapped output, which includes a) mean-std normalization,
where the input images are normalized by the input’s mean and
variance, b) min/max scaling, where the input is simply scaled
in the range [0,1] while preserving the very high precision.
We experimentally observed that generated images get very
skewed results while forcing the input to have the same mean
using (a). One example is shown in the Fig. 1 where we
observe low illumination in dark regions and dark patchy
patterns in the sky.

(a) Norm with mean/std

(b) Norm with [0,1] scaling

Fig. 1: Quantitative performance comparison of best performing
DeepTMO with the target TMOs.

II. DEEPTMO (SINGLE-SCALE) ARCHITECTURE

In this section we specify the detailed architectural details
of basic single-scale generator and discriminator.

A. Generator Architecture

G(Front) has first a convolution layer consisting of 64
filters kernels (or output channels) each of size 7× 7 applied

with a stride of (1,1) and padding (0,0). Next, there are four
convolution layers with 128, 256, 512 and 1024 filter kernels
respectively each with a size 3×3 and stride (2,2) and padding
(1,1). Each of these four layers are followed by the batch norm
with batch size = 1 (also called instance normalization [1]) and
Relu [2]. Following this, we have G(Res) which is a set of 9
residual blocks, each of which contains two 3×3 convolutional
layers, both with 1024 filter kernels. Next, for G(Back) there
are four de-convolutional or transposed convolution layers
with 512,256,128,64 filter kernels, each having a filter size
of 3 × 3 and fraction strides of 1

2 . Both these layers have
instance normalization and Relu added after the convolution.
Finally, there is another convolution layer of size 7 × 7 and
stride 1 followed by a tanh activation function at the end.

B. Discriminator Architecture

Discriminator architecture consists of 4 convolution layers
of sizes 4 × 4 and stride (2,2). From first to the last, the
number of filter kernels is 64, 128, 256 and 512 respectively.
Each of the convolutional layer is appended with an instance
normalization (except the first layer) and then leaky ReLU [3]
activation function (with slope 0.2). Finally, a convolutional
layer is applied at the end to yield a 1 dimensional output
which is followed by a sigmoid function.

III. DEEPTMO-R WITH/WITHOUT SKIP CONNECTIONS

We additionally explored the cGAN based network from [4]
for our tone-mapping task and name it as DeepTMO-R. The
generator architecture of DeepTMO-R is shown in 2. We
use the same discriminator as of DeepTMO single-scale.
DeepTMO-R design is altered by adding skip-connections
between each layer i and layer n− i, n being the total number
of encoder-decoder layers and called as DeepTMO-S, which
as a result concatenates all the channels at layer i with layer
n − i. Various past HDR reconstruction methods, have used
skip connections [5] for generating HDR scenes from single
exposure [6] or multi-exposure [7] LDR images. The basic
idea had been that since, both LDR and HDR scenes are
different renderings of the same underlying structure, at a
particular scale, their structures are also more or less aligned.
Hence, it is possible to effectively transmit low-level details
from input to output scenes,circumventing the bottleneck of
the encoder-decoder architecture.

A. Experimentation

We performed the training and testing for both, DeepTMO-
R and DeepTMO-S in a similar fashion to that of DeepTMO
and also on the high-resolution images of size 1024x2048.
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Fig. 2: DeepTMO-R and DeepTMO-S generator architecture.

DeepTMO-R DeepTMO-S DeepTMO

Fig. 3: While the DeepTMO-R simply results in blurred
outputs in the bark of tree, the DeepTMO-S tries to refine
them but is faced by checkerboard artifacts [8], [9]. The
DeepTMO provides best results amongst the three methods
while preserving the fine details, contrast and sharpness in the
image.

In Fig. 3, we show an simple case of a daytime natural
scene where the three architecture provide results with some
prominent visible effects. From the cropped insets, we see that
DeepTMO-R results in blurry effect on the textured bark of the
tree, similar to previous example. DeepTMO-S on the other
hand, doesn’t produce any blurriness, but instead, we notice
pronounced repetitive checkerboard artifacts. Such artifacts
have been recently discussed in deep-learning based image
rendering problems [8], [9] and are mainly caused due to no
direct relationship among intermediate feature maps generated
in de-convolutional layers. Nevertheless, it is still an open
problem. DeepTMO, on the other hand, gives us sharper and
checkerboard free images while preserving the fine-details too.

IV. DEEPTMO (MULTI-SCALE) ARCHITECTURE

A. Multi-Scale Generator Architecture

G
(F )
1 here consists of 5 convolution layers, with the

number of output channels from first till last being
64,128,256,512,1024 respectively. G(R)

1 has 9 residual blocks
each having 1024 as the number of output channel. For G(B)

1 ,
we have 5 transposed convolution layers with output channels
512,256,128,64 and 1. All the component layers have similar
nomenclature as used in the component layers of G, including
the first layer of G(F )

1 and the last layer in G
(B)
1 .
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Fig. 4: Distribution of best tone mapped output on training
dataset of 700 Images.

G
(F )
2 has two consecutive convolution layers, with output

channels 32 and 64 respectively. The last feature map of G(B)
1

(with 64 output channels) is then element-wise summed with
the output feature map of G(F )

2 , to provide corresponding input
to the residual block G

(R)
2 . G(R)

2 consists of 3 residual blocks
each with 64 output channels. Following this we have two
deconvolution layer in G

(B)
2 with 32 and 3 output channels

respectively. Again the structure of all the component-wise
layers is similar to G.

V. TRAINING DATASET

We provide the training distribution of target tone-mapped
images on training dataset in Fig. 4 considering 13 TMOs.
Note that while training we have used several data augmen-
tation techniques. These target tone-mapped scenes have been
selected using the default parametric settings.

VI. DATASET SOURCE

Dataset is collected from the following sources: [10], [11],
[12], [13], [14], [15], [16], [17], [18], [19], [20]
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