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Abstract—An omnidirectional image (ODI) enables viewers
to look in every direction from a fixed point through a head-
mounted display providing an immersive experience compared
to that of a standard image. Designing immersive virtual reality
systems with ODIs is challenging as they require high resolution
content. In this paper, we study super-resolution for ODIs and
propose an improved generative adversarial network based model
which is optimized to handle the artifacts obtained in the
spherical observational space. Specifically, we propose to use a
fast PatchGAN discriminator, as it needs fewer parameters and
improves the super-resolution at a fine scale. We also explore
the generative models with adversarial learning by introducing
a spherical-content specific loss function, called 360-SS. To train
and test the performance of our proposed model we prepare a
dataset of 4500 ODIs. Our results demonstrate the efficacy of
the proposed method and identify new challenges in ODI super-
resolution for future investigations.

Index Terms—omnidirectional image, virtual reality, super-
resolution, generative adversarial network, spherical-content loss

I. INTRODUCTION

With recent advances in virtual reality (VR), the omnidirec-
tional image (ODI) represents an increasingly important imag-
ing format for immersive technologies. This format provides
realistic VR experiences in which viewers have a sense of
being present where the content was captured. Existing VR
displays, such as a head-mounted displays (HMD), navigate
a given ODI input with three degrees of freedom. ODIs are
captured with 360° camera systems and stored in 2D pla-
nar representations (e.g., equirectangular projection (ERP) or
cubemap projection) [1] to be compatible with existing image
processing pipelines. For display, the ODI is projected onto a
sphere and then rendered through a VR display. When using
this emerging technology, viewers receive a more immersive
experience compared to watching a standard 2D image. ODIs
are used in a variety of applications such as entertainment [2],
advertising, communication [3], health-care, and education.

However, this image representation introduces significant
technical challenges because it requires very high resolution
to cover the entire 360° viewing space. Existing HMDs can
use only part of a given ODI, called the viewport [4], so
even higher resolutions are required to provide an acceptable
level of quality of experience (QoE) [5] in VR. For instance,
according to recent studies [6], the resolution of the captured
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ODI should be 21600×10800 (i.e., 60 pixels per degree) to
provide a sufficiently high-quality ODI for existing HMD
devices. At this level, neither current consumer capturing
systems nor network bandwidths are capable of processing
and transmitting such a large amount of data.

High-resolution content using a single ODI at a lower
resolution can be reconstructed with super-resolution (SR)
techniques. Early studies such as [7, 8] have shown that
high-resolution ODIs with high-quality could be generated
using handcrafted image features. A high-resolution ODI was
constructed by interpolating the missing information between
low-resolution ODI pixels.

In today’s era of deep learning, the core SR algorithms
for traditional images have shifted from interpolation to
learning[9] for constructing the high-resolution image from
a given low-resolution image using predictive or generative
models to find better optimal solutions [10, 11]. Convolution
neural networks (CNNs) have shown great successes in the
SR field [12]. In particular, for standard images, high-quality
reconstruction performance can be achieved by using recent
high-capacity deep learning algorithms such as the generative
adversarial networks (GANs) [13–16].

In this paper, we address the problem of SR with deep
learning for ODIs by introducing an efficient CNN-based
solution for reconstructing ODIs with high resolution from
given their low-resolution ODIs. In particular, we design a
GAN model that inputs a low resolution ODI and outputs a
corresponding high-resolution image (2×, 4×, 8×) of higher
quality compared to what existing algorithms can reconstruct.
Following a generative adversarial network paradigm, our
model consists of a generator (Gsr) and a discriminator (Dsr),
which compete with each other. The generator trying to fool
the discriminator by producing high-resolution output ODIs
for the given low resolution ODIs. The discriminator tries
to distinguish between real and synthetically generated ODI
pairs. To enhance the performance of this adversarial learning
, we also introduce an ODI-structure-preserving loss function,
called 360-SS loss. Our approach handles typical artifacts
appearing at the polar regions of the conventional ERP format
ODIs, and thus preserving more details of the spherical content
in the polar and equatorial regions.

Our contributions in this paper are two fold. Firstly, we
explore the super-resolution of ODIs problem using adversarial
learning paradigm for the first time, and propose the use of
a PatchGAN [17] discriminator to constrain the generator



for predicting high-quality output effectively. Secondly, we
introduce the 360-SS loss function to precisely measure the
objective quality of the ODI in spherical observation space.
In this loss function, the error of each pixel on the projection
plane is multiplied by a weight to account for the influence
of the spherical mapping on the loss estimation. The code for
the proposed method is provided with this paper1. We hope
that our work can inspire further research within the context of
deep learning-based SR to reconstruct high-resolution ODIs.

The rest of this paper is organized as follows. Section II
presents the related work on super-resolution, focusing on
early work for ODIs and recent deep learning-based ap-
proaches. The proposed model and experimental results are
presented in Sections III and IV followed by our conclusions
in Section V.

II. RELATED WORK

In previous two decades, many super-resolution methods
have been proposed, and we briefly describe them in this
section. For more details and examples from this field, com-
prehensive literature reviews are available in [18, 19].

Early work, such as [7, 8], proposed innovative super-
resolution techniques that utilized handcrafted methods or
simplistic learning based techniques [20] for ODIs. In [7],
for instance, the authors first performed a registration between
successive frames of omnidirectional video using the plenoptic
geometry of the 360-degree scene. All the visual information
was then used to generate a high-resolution ODI. Later,
Arican et al. [8] showed how multiple ODIs with arbitrary
rotations could contribute to the super-resolution problem by
leveraging the Spherical Fourier Transform (SFT). In their
work, the joint registration and super-resolution problem was
solved based on the total least squares norm minimization in
the SFT domain.

Recent image super-resolution efforts benefited from ad-
vances in deep learning [21] and end-to-end architectures.
For example, Zhang et al. [13] introduced a dimensional
stretching strategy for a single deep-learning network to han-
dle multiple quality degradations (i.e., blur kernel and noise
level) for super-resolution. Furthermore, Ledig et al. [14]
highlighted the limitations of PSNR-based super-resolution
solutions and introduced a generative network for producing
super-resolutions, called SRGAN. In their work, a perceptual
loss was introduced to optimize the super-resolution model
in a future space instead of pixel space. Later, to recover
more realistic textural details, Wang et al. [15] improved
the discriminator of the SRGAN using a realistic average
GAN [16]. Additionally, they enhanced the perceptual loss
by incorporating features before activation.

However, super-resolution for ODI has not been investigated
sufficiently. To the best of our knowledge, no research work
on the super-resolution of ODIs using recent advances in deep
learning exist.

1https://github.com/V-Sense/360SR

III. PROPOSED MODEL

Our objective is to generate a high-resolution ODI, I360−sr,
from a low-resolution input ODI, I360−lr. To this end, we first
prepared the ODI pairs, the output I360−sr and input I360−lr,
to be used for training. We obtained the low resolution version
following the standard methodology mentioned in [14], where
a Gaussian filter followed by a down-sampling operator is
applied to obtain the low-resolution ODIs. With these training
image-pairs, we then propose to learn the generator G to gen-
erate artifact-free and a better quality high-resolution output
images by optimizing the whole network with an adequate loss
functions. In this paper, we employ the most commonly used
ERP ODI representation.

In the following, we explain the proposed network archi-
tecture including the generator (G) and discriminator (D) and
the proposed loss function (360-SS) to preserve the spherical
content specific details.

A. Generator-Discriminator Architecture

Motivation: The fundamental idea behind a GAN frame-
work is that both the generator and discriminator try to com-
pete with each other. On the one hand, the generator tries to
fool discriminator by producing a high resolution, real looking
ODI by taking a low-resolution ODI input. While on the other
hand, the discriminator tries to discriminate between real and
synthetically generated (by the generator) high-resolution ODI
image pairs. In this process by spanning the sub-space of the
natural images, the generator learns to generate images that
are much closer to their corresponding ground truth. This, on
the contrary, is quite difficult to achieve with a simple CNN
network using a Euclidean loss [17]. In this paper, inspired
from several state-of-art approaches [14, 15], we explore the
adversarial learning framework for our task at hand.

GAN: In order to design a model for super-resolving ODIs,
we adopt the generator architecture from [14]. The layout of
the generator architecture is shown in Figure 1. The network
consists of a convolutional layer followed by five residual
blocks which are capable of capturing the fine details with
high-frequency, bypassing the need of a deeper convolutional
layer network [14]. The network consists explicitly of two
convolution layers and a final sub-pixel convolution layer
which is designed to super-resolute the input image by the
given factor.

Next, we propose to use the PatchGAN discriminator to
discriminate between the real and generated ODI. The layout
of the discriminator architecture is shown in Figure 2. The
PatchGAN discriminator is applied on a 70×70 (overlapping)
patch-size of its input, and the averaged scores are then used
to finalize the decision whether the image is real or fake. In
this process, the network learns to focus at finer patch level
details. An added advantage of a PatchGAN is the smaller
number of the parameters as compared to the discriminator
adopted in [14], which makes the computation faster.

Objective Function: In this work, our objective is to con-
struct high-resolution ODI with high-quality from a low reso-
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lution ODI using super-resolution approach. For this aim, we
formulate our objective as follows:

G∗ = argmin
G

max
D

[Ladv(G,D)]+

βLfeat(G) + γL360−SS(G)
(1)

where we aim to optimize the objective over three loss
functions which are used in the adversarial learning of the
generator G. In the next section we describe the 3 loss
terms: adversarial loss Ladv , feature (content) loss Lfeat and
spherical loss L360−SS . Initially, we detail the proposed loss
function (360-SS) to preserve the spherical content specific
details. Then, we discuss the feature and adversarial loss terms.

B. Loss Functions

a) 360-SS Loss: To account for the distortion of
the spherical surface, we apply the weighted-to-spherically-
uniform structural similarity (WS-SSIM) [22] quality score.
This measurement considers mapping of spherical content onto
the planar surface of a given ODI by adding the appropriate
weight to the SSIM value [23]. As a traditional l2 -based loss
function is inferior to SSIM in many imaging problems, and
the traditional SSIM [23] is not suitable for evaluating ODIs,
we use a novel WS-SSIM-based loss function, called l360−SS .
In this loss function, the spherical surface is considered using a
non-linear weighting in the SSIM calculation. SSIM relies on
computation of luminance, contrast and structural similarities
between distorted and original images and is more consistent
with subjective quality evaluation than the traditional l2 based
loss function [14]. Similar as [24], the non-linear weights are
calculated using the stretching ratio of the area that is projected
from the planar surface to the spherical surface. Thus, the loss
of 360-SS can be formulated as follows:

L360−SS =
1

K

K∑
i=1

di360−SS , (2)

where K represents the number of samples, and

d360−SS =

∑W/r
x=1

∑H/r
y=1

(
SSIM

(
Ix,y360−sr, Î

x,y
360−sr

)
qx,yr

)
W/r∑
x=1

H/r∑
y=1

qx,yr

,

(3)
where W ×H is the resolution of the reconstructed version of
the ERP ODI. Note that x and y denote the pixel coordinates
of the ERP image, Î360−sr and I360−sr stand for the generated
high-resolution and original high-resolution versions of the
ODI, and qx,yr represents the weighting intensity in (x, y) of
the weight distribution of the ERP which can be calculated
according to [24] with:

qx,yr = cos
(y + 0.5− (H/2r)π

(H/r)
. (4)

b) Feature Loss: To penalize the G for the distortions
in the content of ODIs, we incorporate the VGG feature-
based loss [25] function. This loss is computed as the distance
between the feature maps F obtained by passing the ground
truth ODI (I360−sr) and the ODI generated by super-resolution
(Î360−sr) through a pre-trained VGG-19 [25] network. The
feature loss Lfeat is given as

Lfeat =
1

K

K∑
i=1

(F i(I360−sr)−F i(Î360−sr)), (5)

c) Adversarial Loss: We apply adversarial loss [26]
to aide the generator to effectively generate high-resolution
ODIs from the manifold of natural image sets while fooling
the discriminator D network. The adversarial loss term is
computed over all the training samples and is given as:

Ladv =

K∑
i=1

(−logD(G(Ii360−lr))). (6)

The adversarial loss is taken as the negative logarithm of the
probability of the super-resoluted image, similar to [14].

IV. RESULTS & DISCUSSIONS

Next, we describe the used dataset, metrics, implementation
details, and results obtained by our proposed model.
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Fig. 3: Qualitative reconstruction results obtained with different benchmark methods and corresponding high-resolution original ODI. We
applied rectilinear projection to visualize the most significant differences.

A. Dataset and Metrics

Dataset: We randomly selected a total of 4500 ODIs from
the SUN 360 Panorama Database [27]. This database is the
only publicly available ODI dataset that has many high-
resolution panorama images with a wide variety of content,
including indoor, outdoor, structures, human faces. Each se-
lected ODI is in ERP format, and the resolution size is
1440 × 960. More specifically, we use the ERP format for
training and evaluations. 3500 ODIs were randomly selected
from the total set for training purposes, and 500 ODIs were
used for validation and test sets.

Metrics: We evaluated the performance of our proposed
model with four metrics: SSIM [23], PSNR, WS-SSIM [22],
and WS-PSNR [28]. SSIM and PNSR are the well-known full-
reference planar metrics that have been used in the literature
to measure the reconstructed image quality using the original

image. To account for the visual distortion with stretching
factors on planar representation, we used well-known ODI
metrics, S-SSIM and WS-PSNR, to evaluate the performance
of our proposed method. Both ODI quality metrics are the
extended versions of their traditional metrics by considering
the nonlinear relationship between the projection plane and the
sphere surface. Subjective experiments in [5, 29–31] show that
ODI metrics have high correlation with human votes compared
to the standard planar metrics applied to the ERP formats.

TABLE I: Quantitative Results for Super-Resolution by a factor of 2
on 500 ODIs.

Method r = 2
SSIM PSNR WS-SSIM WS-PSNR

NN 0.92 ± 0.06 29.38 ± 0.04 0.86± .03 34.34 ± .05
Bicubic 0.93 ± 0.05 30.64 ± 0.06 0.88 ± .04 35.54 ± .07

SRGAN [14] 0.94 ± 0.05 32.56 ± 0.06 0.90 ± .06 36.35 ± .06
Ours 0.95 ± 0.04 33.20 ± 0.04 0.92 ± .04 37.68 ± .05

Ours+ 360-SS loss 0.95 ± 0.03 33.56 ± 0.04 0.93 ± .06 37.96 ± .03



TABLE II: Quantitative Results for Super-Resolution by a factor of
4 on 500 ODIs.

Method r = 4
SSIM PSNR WS-SSIM WS-PSNR

NN 0.83 ± 0.07 25.77 ± 0.05 0.71± .03 32.44 ± .05
Bicubic 0.85 ± 0.07 26.71 ± 0.03 0.74 ± .04 32.76 ± .04

SRGAN [14] 0.86 ± 0.02 27.11 ± 0.09 0.75 ± .06 34.76 ± .03
Ours 0.87 ± 0.05 27.19 ± 0.08 0.76 ± .05 35.89 ± .05

Ours+ 360-SS loss 0.87 ± 0.04 27.70 ± 0.03 0.77 ± .08 36.98 ± .06

TABLE III: Quantitative Results for Super-Resolution by a factor of
8 on 500 ODIs.

Method r = 8
SSIM PSNR WS-SSIM WS-PSNR

NN 0.83 ± 0.07 23.47 ± 0.05 0.64 ± .06 31.12 ± .04
Bicubic 0.85 ± 0.07 24.26 ± 0.03 0.66 ± .07 31.83 ± .06

SRGAN [14] 0.86 ± 0.02 25.10 ± 0.09 0.70 ± .06 33.00 ± .07
Ours 0.87 ± 0.05 26.24 ± 0.08 0.73 ± .07 34.68 ± .04

Ours + 360-SS loss 0.87 ± 0.04 26.56 ± 0.03 0.75 ± .06 35.54 ± .06

B. Training and Implementation Details

Training was performed on a set of 3500 images of resolu-
tion size 1440× 960 each, where ODIs were down-scaled by
a required factor r ∈ {2, 4, 8}. While training, random crops
of size 512× 512 were applied to the images. Additional data
augmentation techniques such as rotation and flipping were
applied to scale up the training dataset.

Our proposed model was implemented using the Pytorch
deep learning library [32]. To train each model, we set the
batch size to 16. The weights of the all the layers were
initialized randomly and the network was trained from the
scratch. Further, to optimize the network we used the ADAM
solver [33] with learning rates of 10−4. Both control parame-
ters β and γ are set equal to 10. All our models were trained
in an end-to-end fashion for 100 epochs. Training was done
using a 12 GB NVIDIA Titan-X GPU on an Intel Xeon E7
core i7 machine which took approximately 2 hours. Inference
time is 0.030 milliseconds for each ODI. Please not that the
inference time is same as that of SRGAN due to the similar
generator architecture.

C. Quantitative and Qualitative Analysis

Here, we compare the performance between our proposed
method and other state-of-the-art methods using quantitative
and qualitative analysis. For comparison, we used well-known
interpolation techniques: nearest-neighbor (NN) and bicubic,
and the state-of-the-art SR algorithm SR-GAN, which is also
the base of our proposed method. Quantitative results are
summarized in Tables I-III and visual examples are provided
in Figure 3 for qualitative analysis.

In Tables I-III, we show mean and variation values for each
method over 500 test ODIs. Looking at the tables, with respect
to PSNR and SSIM, we see that the scores obtained using
our method have a marginal gain with respect to the other
methods. However, for ODI metrics, we obtain higher gains.
This accounts to the idea of preserving finer details around
the equatorial regions as compared to regions near the poles.
Additionally, we observe that our model performs better with
higher down-sampling factors (e.g., 8×). This further validates

our idea of using a Patch-GAN based discriminator instead
of the more-layered (deeper) discriminator of SRGAN [14].
This analysis can also benefit other high-resolution imagery
studies [34], such as HDR imaging [35, 36]. Furthermore,
our proposed loss function facilitates learning of spherically
distorted content thereby, resulting in higher gains.

To provide qualitative visual comparison between methods,
Figure 3 shows some examples of constructed high-resolution
ODIs for Bicubic, SRGAN, and our proposed method. We
magnify details to display the most significant differences
using rectilinear projection. As can be seen in the results,
the proposed method can construct high-resolution ODI with
higher-quality, compared to the benchmark methods.

As shown in the experimental results, the proposed approach
achieves the highest performance on ERP format. However,
other formats (e.g., cubemap, equi-angular cube map, pyramid
formats, etc. [1]) could also be employed by modifying the
Eq. 4.

V. CONCLUSION

In this paper, we studied the super-resolution problem for
omnidirectional images (ODIs) and proposed a new generative
adversarial network model optimized to handle the artifacts
typically obtained in the spherical observation space of ODIs.
The proposed method utilized a PatchGAN discriminator to
constrain the generator for predicting high-quality ODI output
effectively. A novel loss function called 360-SS was also
introduced to precisely measure the objective quality of the
ODIs in spherical observation space. The proposed method
was compared with state-of-the-art super-resolution techniques
developed for standard images, and its performance was ver-
ified with quantitative and qualitative results. As future work,
we plan to improve and apply the proposed method in ODI
streaming application scenarios.
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