
Augmenting Hand-Drawn Art with Global Illumination Effects
through Surface Inflation

Matis Hudon
matishudon@gmail.com

VSENSE, School of Computer Science and Statistics,
Trinity College Dublin

Dublin, Ireland

Sebastian Lutz
lutzs@scss.tcd.ie

VSENSE, School of Computer Science and Statistics,
Trinity College Dublin

Dublin, Ireland

Rafael Pagés
rafa@volograms.com

Volograms
Dublin, Ireland

Aljosa Smolic
smolica@scss.tcd.ie

VSENSE, School of Computer Science and Statistics,
Trinity College Dublin

Dublin, Ireland

ABSTRACT

We present a method for augmenting hand-drawn characters and
creatures with global illumination effects. Given a single view draw-
ing only, we use a novel CNN to predict a high-quality normal map
of the same resolution. The predicted normals are then used as
guide to inflate a surface into a 3D proxy mesh visually consistent
and suitable to augment the input 2D art with convincing global
illumination effects while keeping the hand-drawn look and feel.
Along with this paper, a new high resolution dataset of line draw-
ings with corresponding ground-truth normal and depth maps will
be shared. We validate our CNN, comparing our neural predictions
qualitatively and quantitatively with the recent state-of-the art,
show results for various hand-drawn images and animations, and
compare with alternative modeling approaches.

CCS CONCEPTS

· Theory of computation→ Computational geometry; · Ap-
plied computing→ Fine arts.
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1 INTRODUCTION

Despite the success and proliferation of 3D graphics imagery, tradi-
tional 2D sketching remains a major art communication medium
and still plays an important role in the preparation phases of 3D an-
imation production (story-boarding, character design, animation).
The key advantage of 2D drawing in animation resides in its natu-
ral, completely constraint-free environment. However, to obtain a
polished drawing or animation, every frame requires a considerable
amount of work and some tasks can rapidly become tedious. To
help with these time-consuming and repetitive tasks, scientists have
tried to automate parts of the pipeline, for example by cleaning
the line-art [Simo-Serra et al. 2017, 2016], scanning [Li et al. 2017],
coloring [Sỳkora et al. 2009b; Zhang et al. 2017], and by develop-
ing image registration and inbetweening techniques [Sỳkora et al.
2009a; Whited et al. 2010; Xing et al. 2015].

This work is an extension of the work presented in [Hudon
et al. 2018]. We present a method to automatically obtain rich
illumination effects on single drawings. These effects include but
are not limited to shadowing, self shadowing, diffuse and glossy
shading and inter-reflections (color bleeding). Such effects are state-
of-the-art in computer graphics and can be rendered providing a
3D model.

Unlike previous methods, we reconstruct our surface models
from a single image input and without any user annotation or input.
Our reconstruction process relies on a neural network trained to
predict normal maps from single sketch images. These maps are
then inflated into qualitative surface proxy models suitable for
applying global illumination effects.

2 RELATED WORK

Shape modeling from hand-drawn sketches has been a very active
field of research for several decades. In the following section we
briefly classify the previous works into two categories: classical
approaches involving geometric priors and more recent methods
relying on machine learning, which often borrow their main prin-
ciples from approaches in the first category.
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2.1 Geometric Reconstructions

One of the first significant works in this field provided inflating-
based tools to build 3D models from 2D data [Igarashi et al. 1999].
Petrovic’s et al. [Petrović et al. 2000] were the first to use this
technique to automate the creation of shades and shadows. They
demonstrated that approximated 3D models are sufficient for gener-
ating plausible and appealing shades and shadows for cel animation.
However, while reducing the labor of drawing shades and shadows
by hand, the method still requires too many manual interactions for
it to be applicable to real world animation pipelines. In Lumo [John-
ston 2002], Johnston showed that convincing illumination could
be rendered only by interpolating surface normals from the line
boundaries. Later on multiple 3D reconstructions improvements
were made using either different types of assumptions on the sur-
faces [Karpenko and Hughes 2006; Olsen et al. 2009] or different
user annotations [Bui et al. 2015; Jayaraman et al. 2017; Shao et al.
2012; Tuan et al. 2017], we refer the readers to [Hudon et al. 2018]
for more details. Some recent works exploit geometric constraints
present in specific types of line drawings [Pan et al. 2015; Schmidt
et al. 2009; Xu et al. 2014], however, these sketches are too specific
to be generalized to 2D hand-drawn animation. Some works have
similar goals to ours. Providing tools to artists to make shading a
less labour intensive task, or simply provide new shading styles
and possibilities for animations. Yet those methods are not fully
automatic and requires some extensive user input. Depth layering
is used in TexToons [Sỳkora et al. 2011] to enhance textured im-
ages with ambient occlusion, shading, and texture rounding effects.
In our opinion the method presenting the best results is Ink and
Ray [Sỳkora et al. 2014], applying smart user annotation to recover
a bas-relief with approximate depth from a single sketch, which
they use to illuminate 2D drawings. Reconstruction results were
recently improved in [Dvorožňák et al. 2018], as they formulate the
reconstruction as a single non-linear optimization problem. Con-
siderable user effort and processing time is required to obtain high
quality reconstructions from drawings. We believe that a method
has to be more efficient and effortless to be used in a real produc-
tion pipeline. Humans are easily able to infer depth and shapes
from drawings [Belhumeur et al. 1999; Cole et al. 2009; Koenderink
et al. 1992], this ability still seems unmatched in computer graph-
ics/vision methods using geometric reconstructions.

2.2 Data-driven Methods.

Geometric methods require a large number of constraints or ad-
ditional user input to reconstruct high-quality 3D models from
sketches. Shape synthesis appears to be a learning problem. Many
recent works have tackled the problem of estimating surface depth
and normals from real pictures using CNNs [Eigen and Fergus 2015;
Eigen et al. 2014; Rematas et al. 2016; Wang et al. 2015]. These
works show very promising results, however natural images intrin-
sically contain much more information about the scene than drawn
sketches, such as textures, natural shades, colors, etc. Accurate re-
sults have been shown [Bansal et al. 2016; Huang et al. 2017; Pontes
et al. 2017] guiding shape reconstruction through CNNs using para-
metric models (such as existing or deformed cars, bikes, containers,
jewellery, trees, etc.). Deep learning has also been used for modeling

from sketches, Han et al. [Han et al. 2017] showed impressive mod-
eling of 3D faces and caricatures using labor efficient user inputs.
Directly related to our work, Lun et al. [Lun et al. 2017], inspired
by that of Tatarchenko et al. [Tatarchenko et al. 2016] use CNNs to
predict shape from line-drawings. However, they make use of multi-
view input line-drawings whereas our main goal is to operate on a
single input drawing. Indeed, for generating illumination effects
on sketches or animations, the reconstruction of a full 3D model is
not necessary. A front/camera view 3D surface is sufficient. Also
[Li et al. 2018] presented a similar method aimed at reconstructing
3D surface from sketches using a robust flow guided neural recon-
struction. Users can refine the results by providing additional depth
values at sparse points and curvatures for strokes. Compared to
Lun et al. [Lun et al. 2017], their reconstructed surfaces are higher
in quality with more details. Su et al. [Su et al. 2018] proposed an in-
teractive system for generating normal maps with the help of deep
learning. Their method produces relatively high quality normal
maps from sketches, combining a Generative Adversarial Network
framework together with user inputs. They also outperformed Lun
et al. [Lun et al. 2017] and the well-known pix2pix [Isola et al.
2017]. This work was later outperformed by [Hudon et al. 2018]
which proposes a method to reconstruct high quality and high
resolution normal maps, allowing for the creation of convincing
illumination effects on 2D sketches and animations (comparable to
high-end geometric methods such as TexToons [Sỳkora et al. 2011]).

This paper is an extension of the work presented in [Hudon et al.
2018]. Additional contributions are:

• A new High Resolution Dataset generated from 600+ 3D
models of characters and creatures harvested from the Inter-
net.

• An improved network design compared to [Hudon et al.
2018] leading to higher quality results.

• An inflation method based on [Nehab et al. 2005] to generate
meshes from the predicted normal maps.

• Comparisons to most recent and successful state of the art.

3 PROPOSED TECHNIQUE

The presented method aims to generate a 3D proxy surface mesh
from a single drawing for the accurate rendering of global illumi-
nation effects. We aim for a completely automatic method with no
user action required.

3.1 Normal Map Prediction

3.1.1 New Dataset. Due to the lack of existing high resolution
datasets, we created our own that will be shared freely with the
research community. We generated training triples, mimicking
human drawing using non-photorealistic rendering (NPR) [Grabli
et al. 2010] of 3D models as described in [Hudon et al. 2018]. We
chose the NPR parameters so the resulting line drawings are not
overly detailed and a little closer, in our opinion, to what an artist
would draw compared to [Lun et al. 2017]. Each triple comprises of
a line-drawing along with corresponding normal and depth maps.
We collected 606 high-quality free of use 3D models belonging to
the characters and creatures categories of several online 3D model
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Figure 1: Our method takes as input a line drawing and a

mask, then automatically predicts a high quality and high

resolution normal map. The normal map is then inflated to

a 3D surface mesh.

sharing websites. Noticing that already available datasets contain
mainly characters in T-poses, our dataset also contains parts of or
complete characters and creatures in more natural postures. We split
the dataset into two sets of 590models for training and 16 for testing.
For each model we generated multiple triples (rendered drawing,
normal and depth maps) corresponding to different viewpoints (42
per model, see Figure 2) leading to a training set of 24780 triples
and a testing set of 688 triples. In this paper, we only use the normal
maps, depth maps were generated for future work.

3.1.2 Inputs. In [Hudon et al. 2018] it was confirmed that counting
on the fully convolutional properties of one network to process in-
puts of higher resolution (than the training set) was not necessarily
the way to get the most qualitative results. Instead, they process
the full resolution input in patches. However, to transmit more
information about the surrounding area, each patch contains 3
channels capturing a local area of interest at 3 different scales. This
input representation also serves as a significant data augmentation.
Indeed, by randomly taking 10 patches per drawing of the dataset
(instead of 100 in [Hudon et al. 2018]), our number of training pairs
rises to 247800. In this paper we additionally make use of a fourth
channel containing a foreground/background mask (see Figure 3).

3.1.3 Network. We propose a new U-Net [Ronneberger et al. 2015]
style encoder-decoder network that significantly improves the re-
sults presented in [Hudon et al. 2018]. Our network representation
can be seen in Figure 4. We added a fourth channel containing
the foreground mask (equivalent to an alpha channel) to the input,
passing more information to the network to achieve more accurate
predictions. Instead of using 2D convolutions with a stride > 1,
we make use of dilated convolutions (a.k.a. Atrous convolutions)
for the five last layers of the encoder. Atrous convolutions bring a
significant gain to dense prediction tasks, such as semantic segmen-
tation [Chen et al. 2014; Yu and Koltun 2015]. Dilating convolution
kernels allows the network to learn long-distance features by vir-
tually increasing the features receptive fields without decreasing
the size of the feature maps and thus preserving spatial resolution
through the network layers. All convolutions are followed by Leaky

ReLUs with a slope of 0.3, except for the final convolution of the
decoder which uses tanH as activation function. We further multi-
ply the output of the last convolution layer with the binary mask
of the input to remove any normals in the background that might
have been created by the network. To train the network we kept
the same loss function:

L =

∑
p (1 − Ne (p) · Nt (p)) × δp

∑
p δp

(1)

where Ne (p) and Nt (p) are the estimated and ground truth normals
at pixel p respectively, and δp ensures that only foreground pixels
are taken into account in the loss computation, being 0 whenever p
is a background pixel and 1 otherwise. With unit length, Equation 1
nicely simplifies to:

L =

∑
p

(
1
2 ∥Ne (p) − Nt (p)∥

2
)
× δp

∑
p δp

(2)

3.1.4 Final NormalMap Reconstruction. As the networkwas trained
on 256 × 256 × 4 input elements, high-resolution drawings have
to be sampled into 256 × 256 × 4 tiles for better results as shown
in [Hudon et al. 2018]. These tiles are then passed through the
network and outputs have to be combined together to form the
expected high-resolution normal map. As shown in [Hudon et al.
2018], direct naive tile reconstructions can lead to inconsistent,
blocky normal maps, which are not suitable for adding high-quality
shading effects to sketches. In order to overcome this issue, we
use a multi-grid diagonal sampling strategy as shown in Fig. 5(e).
Rather than processing only one grid of tiles, we process multiple
overlapping grids, as shown in Fig. 5(e). Each new grid is created
by shifting the original grid (Fig. 5(d)) diagonally, each time by a
different offset. Then at every pixel location, the predicted normals
are averaged together to form the final normal map, as shown in
Fig. 5(c). The use of diagonal shifting is an appropriate way to wipe
away the blocky (mainly horizontal and vertical) sampling artifacts
seen in Fig. 5(b) when computing the final normal map. Increasing
the number of grids also improves the accuracy of the normal esti-
mation, however, the computational cost also increases with the
number of grids.

3.2 Inflation

For the inflation we were greatly inspired by [Nehab et al. 2005].
Under single view and orthographic assumptions, a 3D point cloud
P can be created using predicted depth values yu,v , where each 3D
point Pu,v corresponds to a pixel position (u,v) as follows:

Pu,v = [u,v,yu,v ]
T (3)

Each 3D point Pu,v can also be associated with a predicted normal
vector nu,v . To turn the predicted normal map into a surface mesh,
we inflate a depth map y (initialized to zeros) such that the first
order depth derivatives yield surface tangents as close as possible
to the predicted normals nu,v .

Given a pixel at position (u,v) and its depth yu,v , two surface
tangents can be estimated based on first order depth derivatives:

t
(u)
u,v =

[
1 0 γ

∂yu,v

∂u

]
, t

(v)
u,v =

[
0 1 γ

∂yu,v

∂v

]
, (4)
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Figure 2: Example of triples corresponding to half the views generated for one model. (left) Input 3D model, (top) NPR line-

drawings, (middle) depth maps, and (bottom) normal maps.

Input Representation (256x256x4)

256x256

512x512

1024*1024

Figure 3: Structure of the input data. Here the target normal

reconstruction scale is the blue channel. The two other chan-

nels provide additional multi-scale representation of the lo-

cal area, the last dimension is the foreground/background

mask. Figure partly taken from [Hudon et al. 2018].

Figure 4: Our presented, U-Net style encoder-decoder net-

work.

where γ controls the inflation scale. The term En (ỹ) penalizes the
deviation from orthogonality between surface tangents and the
predicted surface normals nu,v :

En (y) =
∑

u,v

[(t
(u)
u,v · nu,v )

2
+ (t

(v)
u,v · nu,v )

2] (5)

To inflate our depth values, we minimize En (y) using gradient
descent [ADAM]. To compute the depth gradients we make use of

(a) (b) (c)

Last grid positionFirst grid position

(d) (e)

Figure 5: Normal map reconstruction of the input sketch (a)

using a direct naive sampling (b) and our multi-grid diago-

nal sampling (c). Sampling grids used in direct naive sam-

pling (d) and multi-grid diagonal sampling (e). Figure taken

from [Hudon et al. 2018].

Figure 6: Different states of the inflated surface through the

gradient descent iterations. 500 iterations are enough for the

inflation process to fully converge.

two convolutions with the following kernels:

Kx =
1

12



-1 0 1
-4 0 4
-1 0 1


,Ky =

1

12



1 4 1
0 0 0
-1 -4 -1


(6)

Different states of the reconstructed surface through the gradient
descent iterations can be seen Figure 6. The gradient descent process
sometimes leaves the surfaces noisy, therefore we clean the result
using fast guided filtering [He and Sun 2015].

3.3 Rendering

Given a reconstructed surface proxymesh, the input drawing can be
augmented with global illumination effects. Any rendering engine
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Figure 7: Left to right: Input drawing from the characters dataset publish by Lun et al. [Lun et al. 2017], ground truth model,

Lun et al. [Lun et al. 2017], Li et al [Li et al. 2018], proposed.

can be used at this point. For the examples presented in this paper,
we make use of Blender Cycles©rendering engine. For our testing
needs, we created a simple interface between blender and the open
source animation software Pencil2D. In our implementation the
user can easily assign different reflectance properties to flat colors
such as diffuse, glossy or both. The user is able to control the ren-
dering parameters directly in Pencil2D including: the light position,
color and power (a surface area light in our implementation), the
amount of ambient light, the glossy exponent. We also let the user
choose the final quality of the rendering. The default quality is low,
which allows real-time rendering to efficiently set the rendering
parameters. The quality can be increased for the final render.

4 EVALUATION

The whole pipeline from the drawing to the surface inflation was
implemented using Python and Tensorflow. The following table
shows the processing times for a 1000x1000 image:

Table 1: Timings

Total Normal Prediction - 20 Grids 4 sec
Inflation 1.3 sec

In general a user can obtain a surface mesh from a drawing in
approximately 5 seconds, decreasing the number of grids can also
reduce the processing time at the cost of quality.

Table 2: Improvements

[Hudon et al. 2018] [Hudon et al. 2018] Proposed
(re-trained)

L1 0.254 0.223 0.209

L2 0.300 0.264 0.247

Angular 29.799 26.375 24.163

4.1 CNN

4.1.1 Improvements. As an extension of Hudon et al. [Hudon et al.
2018], we present a full comparison showing the improvements
made. Note that [Hudon et al. 2018] already presented a full com-
parison with [Su et al. 2018]. For a meaningful comparison with
[Hudon et al. 2018], we also used a fourth input channel containing
the foreground/background mask to their network for all presented
comparisons. We show that not only does our new dataset allow us
to train more qualitative networks but also that our improvement
of the CNN leads to finer predictions.

The previous table 2 shows numerical errors higher than the
ones presented in [Hudon et al. 2018], this is mainly due to our
more challenging test dataset.

4.1.2 Additional Comparisons. We compare our CNN performance
with the approaches presented in [Lun et al. 2017] and [Li et al.
2018], two of the most recent and interesting systems in the field. In
their paper, Li et al. [Li et al. 2018] compared to [Lun et al. 2017], and
presented a procedure for a meaningful comparison. The authors
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of [Li et al. 2018] kindly provided the reconstructed models used
for comparison in their paper, (see [Li et al. 2018] for complete de-
tails). We use the characters datasets (front-view) published by [Lun
et al. 2017] for re-training and testing the proposed network. In
this dataset input drawings contain more geometrical information
and seem less natural, however reconstructions are capturing more
details. For uniformity we downscaled our resulting normal maps
before computing the angular normal errors on the test dataset to
compare them to the results presented in [Li et al. 2018]:

Table 3: Comparison with recent SOA

Lun et al. Li et al. Proposed
[Lun et al. 2017] [Li et al. 2018]

Angular 22.4 18.6 13.8

A visual comparison of the model reconstruction from [Lun et al.
2017] and [Li et al. 2018] with our inflated models can be seen in
Figure 7 (Low poly ground truth normal maps were smoothed for
training). Without any user input, our method seems to perform as
well as [Li et al. 2018].

4.2 Visual comparisons

We show qualitative comparisons with the most relevant state of
the art aiming at augmenting 2D art or animation with shading or
global illumination effects: Ink and Ray [Sỳkora et al. 2014], which
can be seen in Figure 8. The Ink and Ray pipeline [Sỳkora et al. 2014]
produces very qualitative results at the cost of extensive user inputs
( Figure 8(b-d)) whereas our method is fully automatic (Note that the
mask in Figure 8(g) can be easily and automatically computed from
a color image). As Ink and Ray is based on geometric inflation only,
features such as cloth folds or buttons are not present in the final
mesh, whereas the inflation step in our method allows us to capture
more details. However, the more detailed input that is required by
Ink and Ray makes it possible to model real discontinuities in the
final reconstruction, which are important for global illumination
effects such as self shadowing. The fully automatic reconstruction
in our method doesn’t model these, but is much faster and therefore
closer to real world animation production needs.

To demonstrate the versatility of our method we show some
additional visual results in Figure 10 for various drawing styles.

4.3 PENCIL 2D© Integration

For demonstration purposes only, we implemented our own ver-
sion of pencil 2D able to generate the surfaces and render global
illuminations effects on 2D hand-drawn animations. Screen-shots
of the application can be seen on Figure 9. This implementation is
just an example to showcase what could be done with our method.
We have tried to remain as close as possible to the 2D framework.
In this case the user can assign reflectance properties to plain colors
(diffuse, glossy or both) (See Figure 9(b)). We also give the possibility
to place a horizontal shadow catcher (Figure 9(c)) with a right-click
on the canvas (when our tool is selected). Once the surfaces have

been generated, ©Blender is launched as a back process and allows
us to generate the rendered frames. The quality of the renders are
low by default so the user can set the light properties with real time
feedback (Figure 9(e-f)). Once the user is satisfied with the lighting
she or he can increase the rendering quality and render all frames
(Figure 9(h)).

5 DISCUSSION AND CONCLUSION

In this paper we presented an improvement of [Hudon et al. 2018]:
a new method to apply high quality illumination effects on line
drawings, using accurate 3D reconstruction of the object. We are
convinced that reconstructing 3D shapes from single sketches is
fundamentally a learning problem and that recent advancements
in deep learning will and already have a large impact on this field.
Therefore, our first contribution is a new dataset consisting of over
25000 line drawings with corresponding ground-truth normal and
depth maps. We also present an improvement of the neural network
presented in [Hudon et al. 2018] able to accurately predict normal
maps from line drawings and a fusion process to generate a detailed
3D reconstruction suitable for adding global illumination effects on
a 2D drawing.

The presented method is significantly lighter and simpler to use
than all presented state of the art. Yet we show that the final quality
is equivalent. We show quantitative results regarding the accuracy
of our normal map predictions, where we outperform the current
state of the art. Additionally, we show and discuss the quality of our
results by comparing them qualitatively with results from recent
state of the art.

The main strength of the presented method is that no user input
is required while most of previous works depends more or less
heavily on such inputs. The high-quality of our reconstructions
leads to convincing shading effects in a fully automatic manner, and
therefore could be easily integrated in real animation production
pipelines, reducing drastically the human labour. For our testing
needs, we integrated the presented pipeline into a open source
software of animation Pencil2D ©. While this integration is mainly
for research purposes, this still demonstrates the usability of our
tool. As an example, all results, drawings and animations, presented
in Figure 10 were generated without leaving Pencil 2D.

While the results presented in this paper are really promising,
there are still some issues that we wish to point out. First, in the
current implementation, the CNN cannot handle concave surfaces,
although they are present in the datatset. Perhaps a specific loss
penalizing false non-concave results could be added for training.
Second, while the reconstructed meshes show some details, we feel
that the discontinuities between different elements of a character
are often too small, probably due to the bas-relief ambiguity. The
lack of sharpness and gaps in discontinuities are penalizing for self
shadowing effects to really take place. While discontinuities could
be easily emphasized by inputting sparse depth inequalities such as
in [Sỳkora et al. 2011], we feel that searching for a solution without
any user input is more appealing. Finally, this cannot be seen on
Figure 10, but a small flickering can be observed when processing
animations. We think that spatio-temporal filtering could be used
to solve this issue.
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(a)

(b) (c) (d) (e) (f)

(g) (h) (i)

Figure 8: Comparison of reconstructed meshes with Ink and Ray [Sỳkora et al. 2014]. (a) input, (b-d) additional user input for

[Sỳkora et al. 2014] (images taken from [Sỳkora et al. 2014]) , (e,f) result from [Sỳkora et al. 2014] (provided by the authors),

(g) mask needed for our method (note that in our implementation the mask is automatically obtained from the color image),

(h,i) our result.
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(a) Input animation (top), global illumination example (bottom)

(b) From left to right: input drawing, inflated mesh, rotated mesh, global illumination example

(c) From left to right: input drawing, predicted normal map, inflated mesh, global illumination example

(d) From left to right: input drawing, predicted normal map, inflated mesh, global illumination example

(e) Input animation (top), global illumination example (bottom)

Figure 10: Results of artworks and animations augmented using our method. Note that we made used of physically realistic

area lights therefore shadows are not hard-shadows. The shadow catcher was implemented for demonstration purposes and

is placed horizontally, only the vertical position can be customized.
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