
AUTHORS’ VERSION OF THE PAPER ACCEPTED TO IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020 1

High Quality Light Field Extraction

and Post-Processing for Raw Plenoptic Data
Pierre Matysiak, Mairéad Grogan, Mikaël Le Pendu, Martin Alain, Emin Zerman, Aljosa Smolic

Abstract—Light field technology has reached a certain level of
maturity in recent years, and its applications in both computer
vision research and industry are offering new perspectives for
cinematography and virtual reality. Several methods of capture
exist, each with its own advantages and drawbacks. One of these
methods involves the use of handheld plenoptic cameras. While
these cameras offer freedom and ease of use, they also suffer
from various visual artefacts and inconsistencies. We propose
in this paper an advanced pipeline that enhances their output.
After extracting sub-aperture images from the RAW images
with our demultiplexing method, we perform three correction
steps. We first remove hot pixel artefacts, then correct colour
inconsistencies between views using a colour transfer method, and
finally we apply a state of the art light field denoising technique
to ensure a high image quality. An in-depth analysis is provided
for every step of the pipeline, as well as their interaction within
the system. We compare our approach to existing state of the
art sub-aperture image extracting algorithms, using a number of
metrics as well as a subjective experiment. Finally, we showcase
the positive impact of our system on a number of relevant light
field applications.

I. INTRODUCTION

Theorised in the mid-19th century, light fields are a de-

scription of light rays passing through a volume, and more

generally an interpretation of the properties and interaction of

light in three-dimensional space, as thoroughly described by

Levoy et al. [1]. This is commonly represented by using a

simplification of the plenoptic function proposed by Adelson

et al. [2] into a four-dimensional function describing spatial

and angular dimensions. A number of different methods have

been developed to capture light fields. First, a camera array can

be constructed, by placing identical cameras in a regular planar

grid to simultaneously capture images of a scene, as introduced

by Wilburn et al. [3]. Alternatively, a single camera can be

fixed on a gantry and moved at regular intervals to simulate

the effect obtained from a camera array [4], although only

applicable to static scenes. Finally, through the use of plenoptic

cameras that contain an array of micro-lenses between the

main lens and the sensor, proposed by Ng et al. [5], which

produces dense light fields.

This publication has emanated from research conducted with the finan-
cial support of Science Foundation Ireland (SFI) under the Grant Number
15/RP/2776. This work was supported by TCHPC (Research IT, Trinity
College Dublin). Some calculations were performed on the Lonsdale cluster
maintained by the Trinity Centre for High Performance Computing. This
cluster was funded through grants from SFI. This paper has supplementary
downloadable material available at http://ieeexplore.ieee.org., provided by the
author. The material includes additional results and comparisons, as well
as a more in-depth study of colour and noise patterns in LF data. Contact
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Plenoptic cameras have gained interest in recent years, after

the release of two models by the Lytro company which aimed

at allowing professionals and amateurs alike to capture light

fields with a dense angular sampling, where each micro-

lens outputs unfocused micro-images. Unfocused cameras are

generally exploited by extracting sub-aperture images (SAI),

each with a very wide depth of field and representing different

viewpoints of the scene. Shortly after, another similar type of

camera called plenoptic 2.0 was developed by Lumsdaine et

al. [6]. As opposed to the previous design, here each micro-

lens outputs a focused micro-image. Focused cameras are

typically used to render focused images where the focus can be

dynamically adjusted based on user input. Due to their unique

design, plenoptic cameras generate much more complex RAW

data compared to traditional cameras, and the exploitation of

this data is made more difficult as a result.

Classically, computer vision applications using light field

data prefer to use output in the form of SAIs, as they are more

practical to handle. In this paper, we focus our attention on

these and explain our method to extract SAIs from unfocused

plenoptic camera RAW data. Despite the different solutions

proposed by Cho et al. [7], Xu et al. [8] or Seifi et al. [9], the

light field toolbox presented by Dansereau et al. [10] is the

most widely used in the research community as it offers the

most complete pipeline to extract SAIs. It has for instance

played a central role in the standardisation effort for light

field compression as it is now used as part of the JPEG

PLENO [11] test set. The extraction method comprises four

steps which can be summarised as follows: a devignetting step

first compensates for the vignetting effect of the micro-lenses,

i.e. darker pixels on the edges of each micro-lens; demosaicing

is then applied to retrieve the RGB colour components of each

pixel from the partial colour information actually captured

by camera sensors; a compensation of possible rotation of

the micro-lens array is performed; finally the pixels are re-

arranged to convert the image into a set of sub-aperture

images.

However, the extracted views suffer from several types of

artefacts such as noise, unnatural horizontal stripes, ghosting

effects, colour and brightness inconsistencies on external SAIs,

inaccurate colour balance, and substantial loss of dynamic

range. Unfortunately, these defects have a negative impact

on many light field applications including depth estimation,

segmentation, rendering and compression. An overview of

these issues is described by Wu et al. [13]. Because of these

distortions, a good portion of the external views are generally

ignored for these applications. This impacts their results, as

using less SAIs means potentially missing out on the critical
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Fig. 1: Overview of the proposed Light Field Pipeline. The steps in green correspond to the contributions described in this paper (these
include the contributions of our preliminary paper [12]). The steps in blue are state of the art methods that we additionally included in our
pipeline, but which are not present in the traditional pipeline [10].

information they could provide. Although the proprietary Lytro

Desktop software compensates for many of these issues, it is

still unsuitable for the generation of SAI arrays as its main

goal is to render refocused images.

In this paper, we propose an improved processing pipeline

for lenslet-based plenoptic cameras which is an extension

of our previous work [12]. First, in order to take the most

advantage of the captured RAW data, we propose several

improvements on the low level steps of the traditional de-

multiplexing method of Dansereau et al., converting the RAW

data into sub-aperture images. We specifically show that the

previously used devignetting step had a negative impact on

the image quality, as it tampered with the colour balance and

brightness and caused loss of dynamic range, and we propose

ways to correct this. Additionally, we propose a highlight

processing method to compensate for colour issues related to

sensor saturation. In order to reduce the ghosting effect of

external SAIs, we recommend the use of White Image-guided

interpolation following the work of David et al. [14]. Once the

sub-aperture images are extracted, further quality enhancement

steps are then proposed as post-processing tools. These include

hot pixel removal, correction of colour inconsistencies between

SAIs and denoising. Finally, we show the benefits of the differ-

ent steps of the proposed pipeline by conducting a subjective

experiment and analysing the impact of our results on several

applications, in comparison with the state of the art demulti-

plexing proposed by Dansereau et al. The applications studied

include light field rendering, compression, super-resolution

and editing. For improved readability, and because our pipeline

covers many different methods, the related previous work done

for each of them will be covered at the beginning of this

paper’s major sections.

II. OVERVIEW OF THE PROPOSED PIPELINE

The essential steps of our pipeline are depicted in Fig. 1.

The input data consists of the RAW image formed on the

plenoptic camera sensor. Due to the Bayer filter array placed

on the sensor, each pixel contains colour information only for

one of the RGB components. Another RAW image, called

White Image (WI) is obtained by a preliminary calibration

process involving the capture of a uniform white surface.

First, a RAW demultiplexing method building upon that

of Dansereau et al. [10] is proposed. After a normalisation

step, the White Image is used to remove the vignetting in

the input RAW image. A novel highlight processing step is

then proposed to retrieve natural colours in bright areas where

some pixels reach the sensor’s saturation level. A standard

demosaicing method (Malvar et al. [15]) then recovers the full

RGB colour components at each pixel. Similarly to the work

of Dansereau et al., we compensate for slight misalignments

between the microlens array and the sensor. The recent White

Image-guided interpolation method of David et al. [14] is used

for that purpose. The last steps in the method of Dansereau et

al. are applied without modification. Pixels are reorganised to

convert the lenslet image into a set of sub-aperture images.

Due to the hexagonal lenslet pattern, this step includes a

resampling of each image from a hexagonal to a square grid

of pixels. Finally, white balance and gamma correction are

performed. The novel aspects of the RAW demultiplexing and

the challenges addressed are presented in Sec. III.

After the RAW demultiplexing, several defects remain to be

corrected. The failure of isolated pixels is a common problem

in digital imaging. We choose to correct these so-called ‘hot

pixels’ in a post-processing stage detailed in Sec. IV. A colour

correction method is then proposed in Sec. V to ensure colour

consistency between the light field views. Finally, plenoptic
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imaging is prone to noise that we remove using the LFBM5D

method of Alain et al. [16] (see Sec. VI).

Compared to our preliminary paper [12], the pro-

posed pipeline additionally contains a highlight processing

(Sec. III-B) and a hot pixel removal (Sec. IV) steps. Further-

more, we present a complete evaluation of the pipeline with

a subjective study (Sec. VII) and a study of the effect of our

quality enhancement tools on various applications (Sec. VIII).

III. RAW LIGHT FIELD DEMULTIPLEXING

In plenoptic cameras, the micro-lens array forms a spe-

cific pattern on the sensor, which introduces new difficulties

when processing the RAW data. While the light field toolbox

presented by Dansereau et al. [10] is capable of converting

the RAW data into a set of SAIs, the final images suffer

from various artefacts. Further research on the subject has

essentially focused on adapting the demosaicing step. For

instance, a specific demosaicing method was designed by Yu

et al. [17] for focused plenoptic cameras, i.e. plenoptic 2.0.

For the more common case of unfocused plenoptic cameras,

different optimisation methods have been employed in the

demosaicing of Xu et al. [8], Huang et al. [18] and Lian

et al. [19]. These methods perform respectively 4D kernel

regression, dictionary learning with sparse optimisation, and

total variation minimisation. An original approach is proposed

by Seifi et al. [9], where the demosaicing is performed after

the demultiplexing so that a disparity map can be estimated

first, and then used to guide the demosaicing step. Finally,

White Image-guided demosaicing and interpolation tools are

proposed by David et al. [14] to avoid mixing colour infor-

mation from different micro-lenses.

However, we believe that a more global analysis of the de-

multiplexing is necessary, since many inaccuracies can occur

in other steps of the pipeline, or during the capture process

itself.

A. White Image Normalisation

Dansereau et al. [10] perform lenslet devignetting first as

it results in more uniform brightness over the sensor array

and thus, easier demosaicing. This step simply consists of

a pixel-wise division of the RAW image by a RAW White

Image (WI) that exhibits the pattern of micro-lens vignetting.

Note that the WI was previously captured during a calibration

step by the same device as the picture being processed.

However, the red, green and blue filters in the Bayer filter

array have different responses to the white light. For this

(a) (b) (b)

Fig. 2: Detail of a White Image: (a) unprocessed, (b) after colour
normalisation, (c) after both colour and global normalisation.

(a) (b) (c)

Fig. 3: One view of the light field duck: (a) without WI normalisa-
tion [10], (b) with WI normalisation, (c) with WI normalisation and
highlight processing.

reason, the Bayer pattern is visible on the WI as shown in

Fig. 2(a). Therefore, performing the devignetting step using

the unprocessed WI, as in the method of Dansereau et al.,

interferes with the white balance of the final result. We correct

this issue by multiplying the red and blue pixels of the WI by

normalisation factors provided as metadata of the camera and

accounting for the different responses of the RGB filters. Note

that these factors may also be obtained by colour calibration

of the sensor.

Furthermore, since the pixel values of the WI are lower than

1.0 even at micro-lens centres, the devignetting of Dansereau

et al. also increases the overall brightness of the light field.

Bright areas reaching higher values than 1.0 after devignetting

are considered saturated in the rest of the process, and

the information is lost. Therefore, we also apply a global

normalisation of the WI by dividing all the pixels by its

99.9th percentile (we do not use the maximum value to

exclude possible hot pixels). The effect of the White Image

normalisation step on the colours and brightness of the final

result is clearly visible in Fig. 3. However, by decreasing

the overall brightness, this normalisation step also reveals

unnatural colours in the highlights (see the pink colour in

Fig. 3(b)). We correct this issue in a highlight processing step

presented in the next subsection.

B. Highlight Processing

Due to the different saturation levels of the red, green and

blue pixels on the sensor, the highlights have unnatural colours.

This is a common problem in digital imaging, observed

in over-exposed regions after applying the white balance.

However, in conventional cameras those regions are typically

uniform, making it possible to correct the highlights after the

demosaicing (e.g. [20]–[23]). In plenoptic cameras, the micro-

lens vignetting as well as possible inaccuracies in the devi-

gnetting (e.g. slight mismatch between white image and RAW

image) and demosaicing steps may create artefacts in those

regions for some of the extracted SAIs (see Fig. 3(b)). The

simplest approach for solving the issue is to clip the highlights

after the white balance as done in [10]. However, this results

in a loss of details in the highlights (see Fig. 3(a)). Therefore,

we propose a highlight processing step taking into account

the vignetting pattern (i.e. the normalised White Image) and

applied before the demosaicing in order to retain the details

in the highlights without introducing colour artefacts.

For this step, blocks of four pixels on the RAW image

are processed independently. Since the highlight processing
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is performed before demosaicing, each of the four pixels is

associated with only one RGB component organised according

to the Bayer pattern. We note the values of these pixels xr,

xg1 , xg2 , xb. Corresponding values in the normalised WI are

noted wr, wg1 , wg2 , wb. In this step, we also take into account

the white balance parameters sr, sg , and sb by which the

red, green and blue components will be respectively multiplied

later in the white balance step (see Fig. 1). These values can

also be interpreted as the saturation levels of each component.

First, we consider that saturated pixels are such that

xc · wc > T , with c ∈ {r, g1, g2, b} and T is a threshold set

to 0.99. Note that xc · wc is the original pixel value on the

sensor before the devignetting.

Two cases are considered. In the case where the four pixels

are saturated, no colour information is present. However, the

white balance, applied to those pixels later in the process,

results in an unnatural colour. Hence, we cancel the effect of

the white balance by setting each pixel of index c to the value

xc · ŝ/sc, where ŝ = max(sr, sg, sb). When at least one of

the four pixels is not saturated, we find the index m of the

pixel with lowest value. A saturated pixel of index c then takes

the value xm · sm/sc. However, in practice, separating these

two cases may cause abrupt changes of brightness. Therefore,

we blend between these two behaviours using the following

formula for modifying a saturated pixel xc into x′

c:

x′

c = max

(

(1− α)
xm · sm

sc
+ α

xc · ŝ

sc
, xc

)

, (1)

where α ∈ [0, 1] is the blending parameter indicating the

total amount of saturation as α = min(1, xm · 1
4

∑

c wc)
2.

The maximum between the modified and the original value is

used since xm · sm/sc may be lower than the original satu-

rated pixel xc. This operation prevents possible discontinuities

with neighbour pixels slightly below the saturation detection

threshold.

Note that after the white balance step, the regions recovered

by the highlight processing may have values above 1. In order

to retain those details in the final image without affecting the

overall brightness, we apply a soft saturation function softSat
to each pixel after the white balance step:

softSat(x) = 1−
ln(1 + eR(1−x))

ln(1 + eR)
, (2)

where R is a parameter controlling the smoothness of the curve

(lower R resulting in smoother saturation). We set R = 7 in

our implementation. The soft saturation curve is illustrated in

Fig. 4 and the final result is shown in Fig. 3(c).

Fig. 4: Soft saturation function with different parameters R.

C. White Image-guided Interpolations

Previous analysis by David et al. [14] has shown how stan-

dard demosaicing and interpolations introduced both ghosting

(a) (b) (c)

Fig. 5: Advantages and limitations of the White Image-guided method
of [14]: (a) standard demosaicing [15] and bicubic interpolations,
(b) standard demosaicing [15] and WI-guided interpolations, (c) WI-
guided demosaicing and interpolations.

artefacts and fading of the colours in the external SAIs.

In order to reduce the problem, they adapted those steps

by weighting the contribution of each pixel using the vi-

gnetting pattern of the White Image. Two observations can

be made from their results. Firstly, the ghosting effect is

essentially reduced by the adaptation of the interpolation step

(see Fig. 5(b)). Secondly, while their modified demosaicing

improves the overall colour consistency between SAIs, it may

also create colour noise (see Fig. 5(c)). Hence, we suggest

that only the WI-guided interpolations should be used, and

we propose in Sec. V a post-processing step to enforce colour

homogeneity in the light field.

IV. HOT PIXEL REMOVAL

Hot pixels are isolated pixels taking extreme values due to

internal errors on the camera sensor. Their detection within

the RAW demultiplexing stage is challenging due to the fact

that the demosaicing step retrieves inaccurate colours, not only

for the hot pixels, but also for their neighbours, corresponding

to angular neighbours in the light field. However, in the sub-

aperture images obtained by the demultiplexing, the spatial

neighbours of the hot pixels are unaffected. Furthermore, hot

pixels are not accurately removed by traditional light field

denoising methods, such as the ones presented in Section VI.

Thus we directly perform hot pixel removal after RAW de-

multiplexing.

A typical issue for hot pixels is the fact that they exhibit

extreme values in their colour components, but this in itself is

not a sufficient criteria for detection. Instead, for each SAI I ,

we identify hot pixels by comparing the colour values xi of

each pixel i to those of its neighbours in Ωn×n(i), the n× n
window centred on the pixel i. Based on this, we compute a

probabilistic measure ρi to indicate how likely i is to be a

hot pixel and threshold this value to detect the most likely hot

pixels in the SAI. We tested colour values in both the RGB and

CIELAB colour spaces [24], and found that CIELAB helped

us identify hot pixels more easily, so we chose to use this

colour space exclusively.1

The procedure we use to detect hot pixels is described in

Algorithm 1. For each pixel colour xi in CIELAB space, if

it lies within a colour distance td to only a small number of

pixels (less than tc) in the window Ωn×n(i), the value ρi will

be high (see Algorithm 1). The distance we use in CIELAB

1We use Matlab’s rgb2lab function to convert to CIELAB d65, with L*
taking values between 0 and 100 and a* and b* values between ±110.
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space is the Euclidean distance. In Fig. 6(b) we display ρi
values for each pixel in SAI (a), with the red values in (b)

showing pixels with the highest ρ value. We then threshold

these values in order to detect the most likely hot pixels, with

ρi > tρ selected (Fig. 6(c)). Since hot pixels do not typically

appear as white in an image, we also add a check to make

sure pixels that lie within a distance tw of the colour white

(such as small regions of white highlights on an object) are not

incorrectly detected as hot pixels (see Algo. 1). Here, we can

see that our detection method is robust to colour changes along

edges, with very few edges being detected incorrectly as hot

pixels. Finally, we correct the hot pixel i using a 3×3 median

filter centred on it, which takes the median value for the L*, a*

and b* components (ignoring the hot pixel values) and applies

it to the hot pixel. Fig. 6(d) shows the final results in which

the isolated red and green hot pixels have been successfully

detected and restored via our hot pixel removal.

Result: SAI I with hot pixels removed.
Define thresholds td = 30, tw = 30 and tρ = 0.8, window

size n = 7 ;
for i ∈ I do

Compute Ωn×n(i);
/* Compute hot pixels probability map */

Define count = 0;
for i′ ∈ Ωn×n(i) do

if ||xi′ − xi||2 < td then
count← count+ 1;

end
end

ρi = 1− count

n2 ;
/* Filter hot pixels */

if (ρi > tρ and ||white− xi||2 > tw) then

xi ← medianL∗a∗b∗(Ω3×3(i)− {i}) ;
end

end
Algorithm 1: The process used to detect and correct hot pixels
in an SAI I . Here, white = [100, 0, 0] is the colour white in
CIELAB space and || · ||2 denotes the Euclidean distance.

V. COLOUR CONSISTENCY CORRECTION

After RAW demultiplexing, large differences in colour still

exist between the centre and external SAIs, as can be seen in

Fig. 7(b). We refer the reader to the supplementary materials

providing insights on how the colour consistency is affected by

the demosaicing and its interaction with the devignetting step.

To correct this, we chose a recent image recolouring approach

proposed by Grogan et al. [25] (described in Sec. V-A) and

adapt it to light fields. Similar to other colour correction

approaches proposed in multiview geometry and panorama

stitching applications, such as the ones by Oliveira et al. [26],

Park et al. [27], Xia et al. [28] and Hwang et al. [29], this

approach uses colour correspondences between a target and

palette image to compute a transfer function that maps the

colours from the target image to match those of the palette.

In [25], Grogan et al. show that their approach outperforms

several leading colour correction approaches [27], [28], [30]–

[33] when applied to images with similar content. Overall,

their correspondence based method is shown to outperform

those that do not consider correspondences [30]–[32] while

(a) (b)

(c) (d)

Fig. 6: (a) Input SAI with zoom clearly showing red and green hot
pixels as described in Sec. IV; (b) heat map showing values ρi for
all pixels i; (c) detected hot pixels with ρi > tρ; (d) our corrected
SAI.

their flexible thin plate spline colour transfer function allows

them to correct more non-linear colour differences between

images, outperforming methods whose transfer functions de-

pend on only a small number of parameters [27], [28]. They

also found that Hwang et al’s method [33] can introduce visual

artefacts when correspondence outliers are used to estimate the

transfer function, while Grogan et al.’s cost function is shown

to be more robust to outlier pairs, with the smooth transfer

function also ensuring that similar colours stay similar after

recolouring. For these reasons, we decided to adapt Grogan et

al’s method to light field data, and in this section give further

details about our approach.

A. Correspondence Estimation

For the colour transfer algorithm to produce good results,

we needed to compute accurate correspondences between

both views. We explored existing methods for correspondence

estimation between SAIs following the example of Chen et

al. [34], who used optical flow successfully in their work

on light fields and chose to adapt a similar method. As the

colour transfer algorithm does not require that all the pixels

of an image pair are matched to obtain satisfying results, a

preference towards lower computational complexity was taken

in this step. We therefore used only the first step of coarse-

to-fine patch matching (CPM) developed by Hu et al. [35] to

obtain a set of sparse correspondences between pairs of views.

It is similar to PatchMatch [36] and works by taking n pixels

on a regular grid in the target SAI as seed pixels, noted c
(n)
t ,

and finds their matching pixels, or correspondences, in the

palette view, noted c
(n)
p . To compute these correspondences,

a candidate set of correspondences is first found using SIFT

features. In the second step, points are sampled around each

candidate correspondence, and if they prove to be more

accurate, replace the original. This process iterates a number

of times until a globally stable set of correspondences is
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(a) RAW demultiplexing by Dansereau et al. (b) Proposed RAW demultiplexing (c) Proposed Recolouring step

Fig. 7: Matrix of sub-aperture images of the bee_2 light field. This view allows to better perceive the improvement on the fidelity of the
colours our demultiplexing (b) offers over the demultiplexing of Dansereau et al. [10] (a), and highlights the colour inconsistencies on the
external views that we fix (c).

found. Finally, outliers are detected and removed from the

pool, creating the final set of correspondences {c
(n)
t , c

(n)
p }.

This process provides us with on average 30k correspon-

dences between two images of size 625 × 434. We extract

the colour information of these pixel pairs to form the colour

models representing both target and palette images and pass

them on to the colour transfer algorithm.

B. Colour Transfer

Given a set of n colour correspondences (c
(k)
t , c

(k)
p )k=1...n

between the target and palette image, where the set of colours

c
(k)
t from the target image should correspond to the colours

c
(k)
p from the palette after recolouring, Grogan et al. [25]

propose to fit a Gaussian Mixture Model to each set of

correspondences as follows:

pt(x|θ) =
n∑

k=1

1

n
N (x; φ(c

(k)
t , θ), h2I) (3)

and

pp(x) =
n∑

k=1

1

n
N (x; c(k)p , h2I) (4)

Each Gaussian is associated with an identical isotropic

covariance matrix h2I, and the vector x ∈ R
3 represents values

from a 3D colour space. Transforming the colours c
(k)
t by

some transformation φ which depends on θ creates the colours

φ(c
(k)
t , θ). The goal is to transform the colour distribution

of the target image to match that of the palette image by

estimating the transformation φ that registers pt(x|θ) to pp(x).
Grogan et al. propose letting φ be a global parametric thin

plate spline transformation:

φ(x, θ) = A x+ o
︸ ︷︷ ︸

Affine

+

m∑

j=1

−wj ‖x− qj‖2

︸ ︷︷ ︸

nonlinear

(5)

with θ = {A, o, wj} the parameters to be estimated. Here,

A is an affine matrix, o is a translation offset vector and

{wj ∈ R
3} are coefficients controlling the non-linear part of

the transformation with {qj}j=1,..,m a set of control points

evenly sampled in the colour space.

To estimate the parameter θ controlling φ, the following is

minimised:

C(θ) = −〈pt|pp〉 =
n∑

k=1

1

n2
N (0; φ(c

(k)
t , θ)− c(k)p , 2h2I)

(6)

For our application, better results were obtained using the

CIELAB colour space rather than the RGB colour space.

Similar to [25], we add a regularisation term to ensure our thin

plate spline function is smooth. We also found that additional

steps had to be taken when optimising this cost function to

avoid local minima. Therefore we used a two step process to

estimate θ. The first step computes an initial estimate for θ
using a subsample of the correspondences (computed using

k-means with K = 1000). In the second step, the parameters

A and o are fixed and only the non-linear parameters wj are

refined using the full set of correspondences. We found that

this two step process ensured local minima were avoided and

the correct solution was found.

C. Propagation

As an improvement on our previous work [12] we decide

here to focus on the propagation scheme that allows for

the best visual quality. Our goal here is to guarantee two

things: firstly that colours be consistent across the light field,

i.e. two consecutive views should not exhibit any visible

difference between them, and secondly that true scene colours

be preserved as much as possible in all the views.

The propagation scheme we use in this work is twofold. The

demultiplexing step of our pipeline ensures we obtain natural

colours in all the views, with the central views displaying the

most accurate colours. Therefore, when recolouring a target

SAI T in the light field we first compute correspondences

between T and the centre view M of the light field using

the method described in Section V-A. To ensure T displays

similar colours to its neighbouring images, we also compute

correspondences between T and its inner neighbouring view

P . If T lies on the central column of the light field, its inner

neighbouring view P also lies on the central column, either

above or below T depending on which is closest to the centre

view M . Otherwise, P will lie on the same row of the light

field as T , again either to the left or right of T depending

on which is closest to the centre view M . For each target

SAI T , this combination of correspondences is then input into

Eqs. (3) and (4), meaning each view will be recoloured using
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Fig. 8: Pattern representing our propagation of colours in a light field.
The centre column is processed first, then each row.

a function computed using correspondences from the centre

view and its inner neighbour. We recolour each SAI in the

light field starting with the centre column, from the centre

view and outward, then in every row, from the middle view

outward. This procedure is described in Algorithm 2, with a

visual explanation given in Fig. 8.

The choice to include the previously-recoloured neighbour

views was made empirically. When only using the centre view,

artefacts occur due to large parallax between external views

and the centre view. On the other hand using only the inner

neighbour views can cause a slight fading of colours as we

move toward the edges of the light field, as each successive

recolouring causes a minor loss of colour intensity. Therefore,

the use of two views simultaneously as palette images helps

us ensure that we get both the most vivid colour in every

view, and a reduction in the possible artefacts introduced by

the method.

Result: Colour corrected Light Field with m×m SAIs.
Define M = I(⌈m

2
⌉,⌈m

2
⌉);

for j = 0 : (⌊m
2
⌋ − 1) do

/* Centre column, downward direction */

colCorrect(⌈m
2
⌉+ j + 1, ⌈m

2
⌉, ⌈m

2
⌉+ j, ⌈m

2
⌉);

/* Centre column, upward direction */

colCorrect(⌈m
2
⌉ − j − 1, ⌈m

2
⌉, ⌈m

2
⌉ − j, ⌈m

2
⌉);

end
for k = 0 : ⌊m

2
⌋ do

for j = 0 : (⌊m
2
⌋ − 1) do

/* every row, from centre SAI to right

*/

colCorrect(⌈m
2
⌉ ± k, ⌈m

2
⌉+ j + 1, ⌈m

2
⌉ ±

k, ⌈m
2
⌉+ j));

/* every row, from centre SAI to left */

colCorrect(⌈m
2
⌉ ± k, ⌈m

2
⌉ − j − 1, ⌈m

2
⌉ ±

k, ⌈m
2
⌉ − j);

end
end

Function colCorrect(rowT , colT , rowP , colP):
T = I(rowT ,colT );
P = I(rowP ,colP );
(ct, cp) = (cT , cP ) ∪ (cT , cM );

θ̂ = argminθ C(θ);

I(rowT ,colT ) ← φ(T, θ̂);
return;

Algorithm 2: The propagation technique used to recolour the
entire light field. The blue and red regions correspond to the
blue and red arrows in Fig. 8.

VI. DENOISING

In addition to the colour artefacts addressed previously,

lenslet plenoptic cameras have by design a lower signal to

noise ratio than single lens cameras, since light rays coming

from different angular directions are no longer averaged on

a single pixel sensor. Thus we propose to apply denoising

as a final step of the pipeline. Note that in conventional

photography, it is sometimes preferred to perform denoising

either before or jointly with the demosaicing step when the

RAW data is available (e.g. [37]–[39]). However, applying

such denoising methods on plenoptic RAW data would not

exploit the redundancies in the 4 dimensions of the light field.

Furthermore, neighbour pixels on the sensor may correspond

to different lenslets and thus belong to diametrically opposed

SAIs. Therefore, applying denoising in the early stages of

the pipeline is likely to produce cross-talk artefacts on the

external SAIs. A similar issue was observed in Fig. 5(a)

when using linear interpolation for the lenslet array rotation

step. Denoising is then preferably applied at the end of the

process, after the colour correction step, since the latter helps

to improve the consistency of the light field over the angular

dimensions. This benefits most existing light field denoising

methods, which rely on the angular redundancy.

A trivial approach to light field denoising consists of ap-

plying an existing single image denoising filter (see Dabov

et al. [40], Shao et al. [41] or Jain et al. [42]) independently

to the SAIs. However, better performances are obtained when

taking into account the pixel correlation in-between the SAIs.

SAIs can, for instance, be stacked in a pseudo-video sequence

and denoised using a state of the art video denoiser such as the

VBM4D of Maggioni et al. [43]. The angular correlation can

also be exploited along the epipolar plane images (EPI): Li et

al. [44] use a two-step method which first denoises EPIs taken

along a given spatial and angular dimension (e.g. horizontally),

and then processes this first estimate using the complementary

EPIs (e.g. vertically). Sepas-Moghaddam et al. [45] stack the

EPIs in a pseudo-video sequence and denoise using the video

denoiser of Maggioni et al. However, none of these methods

fully takes advantage of the 4D structure of the light field.

Recent improvements in light field denoising performance

are thus based on a better exploitation of the 2D angular

dimensions. Chen et al. [46] use two joint convolutional neural

networks to denoise the light field along the angular and spatial

dimensions respectively. Liu et al. [47] denoise light field 4D

patches first using a tensor decomposition. The SAIs are then

combined into a single high resolution image which is further

denoised, and finally projected back into denoised SAIs at the

original resolution.

Any of the denoising methods cited above could be used

in the proposed pipeline, but we choose the state of the

art LFBM5D filter, which was shown to perform well on

lenslet light fields by Alain et al. [16]. As in the BM3D

filter of Dabov et al. or the VBM4D filter of Maggioni et

al., the LFBM5D filter exploits the non-local self-similarities

occurring in natural images, in addition to the spatio-angular

redundancies. 5D patches built from similar 2D patches are

filtered in the 5D transform domain, where their spectrum is
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TABLE I: Details of the processing applied to the different groups
of images or videos used for the validation of the proposed pipeline.

D
a

D
e

D
eH

R
e

D
a
N

D
eN

R
eN

Dansereau et al. [10] X X

Our demultiplexing (Sec. III) X X X X X

HPR (Sec. IV) X X X

Recolouring (Sec. V) X X

Denoising (Sec. VI) X X X

very sparse and offer a good decorrelation between the true

underlying signal and noise coefficients. Noise can thus be

filtered by applying hard-thresholding on the 5D transform

coefficients in a first step, and Wiener filtering in a second

step. The LFBM5D output is then obtained by applying the

inverse 5D transform on the filtered 5D spectrum.

The denoised light field is the output of the proposed

pipeline, and we evaluate the full performance of the pipeline

in the next section, as well as its preprocessing advantages for

several light field applications in Section VIII.

VII. VALIDATION OF THE PROPOSED PIPELINE

We use a variety of metrics and experiments to validate the

effectiveness of our pipeline. 17 light field sets were chosen

from the EPFL [48] and INRIA [49] datasets captured with

Lytro Illum cameras, as well as datasets captured using our

own Lytro Illum camera; those include one set featuring non-

Lambertian objects, in order to study the effect of these on

selected applications. A metric analysis of 10 light fields from

the recent Stanford dataset [50] can also be found in the

supplementary material. A more detailed review of the dataset

used here, an extended clean and corrected dataset, and code

for our pipeline is available online2.

In order to validate the different steps of the proposed

pipeline, we consider the following seven combinations of

settings (see Table I) : 1-Da) demultiplexing of Dansereau

et al. [10], 2-De) proposed demultiplexing (Sec. III), 3-DeH)

proposed demultiplexing + Hot Pixel Removal (HPR) (Sec.

IV), 4-Re) proposed recolouring (Sec. V), 5-DaN) toolbox

of Dansereau et al. + our denoising (Sec.VI), 6-DeN) our

demultiplexing + our denoising, and 7-ReN) our full pipeline

(demultiplexing, HPR, recolouring, denoising).

Note that other demultiplexing methods have been presented

in [7]–[9]. However, similarly to [10], they do not consider

the issues of wrong white balance and exposure, saturated

highlights, colour inconsistencies, hot pixels and noise. There-

fore, this section only presents comparisons against the method

[10] which we have built upon. Nevertheless, further review

and evaluation of the relevant tools in [7]–[9] as well as

the more recent PlenoptiCam software3 [51] are given in the

supplementary materials.

A. Colour Consistency

We first show in Fig. 9 the importance of the simple

normalisation steps proposed in Section III-A for the colour

2https://v-sense.scss.tcd.ie/research/light-fields/high-quality-light-field-
extraction/

3code available at: https://github.com/hahnec/plenopticam

(a) Dansereau et al. vs Lytro Desktop (b) Our method vs Lytro Desktop

Fig. 9: Below red line: refocused image from Lytro Desktop propri-
etary software (using ‘as shot’ white balance option). Above red line:
central SAI of the bee_2 light field obtained with (a) Dansereau et
al.’s method [10], (b) our method. (Standard sRGB gamma correction
is performed in both cases.)

balance and overall brightness. For reference, the bottom right

part of each sub-figure shows a refocused image obtained by

the Lytro proprietary software with the intended colours, i.e.

as displayed by the camera when taking the picture. Note that

the results of Dansereau et al. [10] are often wrongly assumed

to be gamma corrected, leading to exaggerated contrasts

and colour saturation. For a fair comparison, we performed

standard sRGB gamma correction for both methods.

We used several metrics to evaluate the colour accuracy of

our processed pipeline results including PSNR, SSIM [52], S-

CIELab [53] and a histogram distance metric. For each metric,

we use the centre SAI as reference and compute the distance

between it and all other SAIs in the light field, and averaged

the results over all SAIs. We used the centre view as reference

for these metrics since the colours in the centre view are

the most accurate and are not affected by the colour fading

artefacts present in the outside views. Disparity differences

between the centre view and all other SAIs may affect the

evaluation, but since all methods are compared on the same

set of light fields with the same disparity differences, metric

values are still indicative of colour correction accuracy. PSNR

and SSIM were computed per colour channel and averaged.

The results can be seen in Fig. 10. As PSNR, S-CIELab and

SSIM capture local colour differences between images, their

accuracy can be affected by disparity changes between SAIs.

As a result we have also included a global histogram distance

which is more robust to changes in the image. For a pair of

images, to compute this histogram distance we calculated the

average chi-square differences between their L*, a* and b*

histograms, each computed on 25 bins.

In Fig. 10, we compare the colour consistency of results

generated with Da, DeH, Re and ReN. In terms of PSNR,

SSIM, and S-CIELab, Da performs the worst in all cases,

followed by DeH, Re and ReN, confirming that each step of

our pipeline improves the consistency of the light field and

its fidelity with the centre SAI. The histogram distance results

tell a similar story, with the initial decoding methods Da and

DeH performing the worst in general, followed by Re and ReN.

However, this metric indicates that in some cases, Da and DeH

are more consistent than Re and ReN (raoul and la_guin).

Upon close inspection we found that some colour inconsis-

tencies present after decoding (DeH) were not successfully

removed after recolouring (Re) due to the smooth, global

nature of our thin plate spline colour transfer function which

ensures that similar colours in the image cannot become very
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Fig. 10: Metric comparison, using PSNR, SSIM [52], S-CIELab [53]
and histogram distance. Higher values are better in terms of PSNR
and SSIM, and lower are better for S-CIELab and the histogram
distance.

(a) (b)

Fig. 11: The centre SAI in raoul is overlaid in column blocks onto
one of the outside SAIs before recolouring (a) and after recolouring
(b). The colours at the bottom of the images indicate which SAIs
the columns are taken from - the centre SAI (blue), the outside SAI
before recolouring (green) or the outside SAI after recolouring (red).
The colour differences in the red background between the centre and
outside SAIs in (a) are successfully removed in (b) but slight reddish
tones are introduced into the cat’s fur.

different after recolouring. For example, in the raoul light

field, large portions of the red background were darker in

colour in the outside SAIs (see Fig 11 (a)). After recolouring

using our technique, the dark red regions were brightened

to match the centre image, but this also caused the brown

colour of the cats fur, which has pixels similar in colour to the

dark brown in the background, to become more red (see Fig

11 (b)). Therefore, although large portions of the recoloured

outside and centre SAIs are similar, other smaller regions

may still differ slightly in colour. This explains the spike in

colour consistency appearing in the local histogram metrics

for the raoul and la_guin light fields. However, we found

that these artefacts do not occur regularly, and even when

they are present, our propagation technique ensures colours

change gradually across the light field SAIs, with neighbouring

images displaying similar colours with only slight colour

variations. Our subjective experiments also highlight that even

in these cases, the recoloured SAIs are more pleasing than

those without recolouring (see Table IV).

Fig. 12: Recolouring examples on the cchart and bee_2 light fields.
The first column shows the centre SAI (red and blue lines are used to
create the EPIs in Fig. 13); the second column is one of the external
views, notice the apparent washing out of the colours compared to the
centre view; the third column is the same view after our recolouring,
restoring most of the original colours.

(a)

(b)

(c) (d) (e) (f)

Fig. 13: Stacked EPIs showcasing colour differences in the bee_2
(a,b,c) and cchart (d,e,f) light fields: after our RAW demultiplexing
(a,d), after recolouring (b,e), and after denoising (c,f). Dark lines in
(a,d) are caused by the dark SAIs in the corner of the light field (see
Fig. 15) which are corrected by our recolouring. Selected lines are
shown in Fig. 12.

Overall, we see that each step of the proposed pipeline im-

proves colour consistency and reduces the colour or histogram

distances while improving the structural similarity by bringing

brightness and contrast to similar levels, and overall lowering

pixel-wise error.

We visually assess the results of our recolouring method

in Figs. 7, 12 and 13. The results are visually pleasing, with

smooth transitions between consecutive views, seen in Fig. 7,

and the colours overall remaining consistent with those in the

centre view (see also Fig. 12). This is particularly visible when

computing EPIs (as seen in Fig. 13), which consist of stacks

of the same horizontal or vertical line of pixels taken across

all the views of the light field. These images show a clear

improvement in colour consistency over the whole light field,

which is further improved after the denoising process.

B. Noise Analysis

1) Analysis on a ground truth noise free dataset: Since the

light fields captured with the Lytro camera do not have a noise

free ground truth, we propose to quantify the noise level by

performing blind noise level estimation. For that purpose we

use the method of Chen et al. [54], which estimates the noise
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TABLE II: Noise level σest estimated using [54] for each light field
and each setting combination described in Table I. The 3 setting
combinations including denoising are shown on the right.

σest Da De DeH Re DaN DeN ReN

anky 2.62 1.91 1.90 1.82 0.86 0.48 0.51

cchart 1.92 1.99 1.99 1.53 0.54 0.63 0.65

desk 3.45 3.06 3.11 2.85 1.18 0.97 1.12

friends 3.18 3.02 3.03 2.93 1.96 1.91 1.96

magnets 2.86 2.85 2.85 2.86 1.87 1.89 2.02

bee_1 2.08 2.13 2.13 1.80 0.79 0.89 0.97

bee_2 8.53 5.73 5.69 3.97 6.68 3.42 2.04

chezed 8.20 5.44 5.41 3.72 6.29 3.06 1.55

duck 6.60 5.40 5.49 5.74 5.76 4.66 5.05

fruits 5.87 4.36 4.39 3.48 4.45 3.11 2.50

rose 5.12 3.91 3.92 3.38 3.28 2.29 2.01

la_guin 4.07 3.06 3.06 2.47 1.64 0.88 0.71

chicken 4.90 3.29 3.32 2.86 3.23 1.80 1.69

odette 5.93 4.29 4.20 2.99 3.98 2.25 1.48

raoul 3.94 3.18 3.22 3.09 2.53 2.02 2.03

rodo 8.12 6.26 6.23 3.79 6.21 4.10 1.85

ukulele 4.42 3.43 3.44 3.45 2.94 2.14 2.24

Average 4.81 3.72 3.73 3.10 3.19 2.15 1.79

2 3 4 5 6 7 8

Ground truth noise level
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Fig. 14: Blind noise level estimation [54] plotted against the ground
truth noise level, averaged over the 5 light fields of the noisy dataset.
Although the no-reference metric from [54] does not estimate the
exact noise level, it can be use for relative comparison.

level of an image based on the eigenvalues of the covariance

matrix of the image patches, based on an Additive White

Gaussian Noise (AWGN) model.

To first validate the assumption that the noise of the Lytro

camera follows the AWGN model, we created a noisy light

field dataset consisting of 5 scenes. For each scene, 3 different

noise levels were created by changing the ISO gain and

maximising the shutter speed so that the image is as bright as

possible without saturation. For each scene and ISO setting,

~30 noisy instances were captured, and a ground truth noise

free light field was created by averaging the noisy instances.

We ensured that the lighting conditions remained stable. The

light field noise can then be obtained by removing the noise

free light field from the noisy instance. By analysing the

histograms of the light field noise, we observed that the

AWGN model is validated for each SAI of the light field.

By fitting a normal distribution to the histograms, we then

obtained the ground truth noise level for each colour channel as

the standard deviation of the normal distribution. More details

Fig. 15: View of the matrix of SAIs with the pattern of progression
used to create the subjective test videos. Black and dark corner images
are ignored for comfort to avoid flickering.

on the dataset are given in the supplementary material.

Finally, we evaluated the chosen blind metric [54] by

comparing the estimated noise level to the ground truth. The

graph of Fig. 14 shows the estimated noise level, averaged

over all SAIs and all light fields, against the ground truth noise

level. While the blind metric does not evaluate the exact noise

level, a near linear relationship between the ground truth and

estimated noise level can be observed, which validates the use

of the chosen metric for the evaluation of our pipeline.

2) Noise level estimation of the proposed pipeline: Here we

estimate the noise level after each step of the pipeline using

the blind metric [54]. The noise level of the whole light field

is computed by first independently estimating the noise level

of each SAI, and then averaging the results. Results are shown

in Table II for all setting combinations described in Table I

and all 17 test light fields.

We observe that our proposed demultiplexing method can

slightly reduce the noise level compared to Dansereau. The hot

pixel removal step does not impact the noise level significantly,

since the hot pixel noise is very different from AWGN. The

noise level is again slightly decreased after colour correction,

but overall the order of magnitude of the noise level remains

unchanged for all these steps. In some cases the noise is even

amplified after the colour correction, which further justifies

applying denoising last, e.g. cchart, chezed. A clear reduction

of the noise level is observed for all approaches after applying

the LFBM5D filter. Overall, our full pipeline provides the

smallest noise level compared to applying denoising on the

demultiplexing of Dansereau et al. [10] or on our proposed

demultiplexing approach. A visual comparison before and after

denoising is shown in Fig. 13.

C. Subjective Evaluation

We evaluated the pipeline using a subjective experiment.

For this we crafted videos showing all SAIs, starting from

the centre view and following an expanding snail-like pattern

going clockwise toward the external views (see Fig. 15).

This pattern was chosen instead of a more traditional snake-

like pattern going from line to line because it highlighted our

modifications of the external views more clearly, and offered

smoother transitions. To stay consistent across all methods,

and to reduce discomfort, we decided to ignore the four black

and four dark views in each corner. Only our recolouring step

fixes the dark views and keeping them in the videos causes
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unnecessary flickering for the other methods. The videos were

created with 25 fps for comfort and were therefore approxi-

mately seven seconds long. Using the datasets described in

Sec. VII, this resulted in 119 videos so the full session lasted

approximately 30 minutes, including time for explanations,

setup, a short training and comments at the end.

We collected data from 22 voluntary participants (14 men,

8 women) who were tested for visual acuity and colour

blindness, and rated these videos in a traditional side-by-side

pairwise comparison experiment. We used Psychtoolbox for

Matlab in order to ensure the videos were properly synchro-

nised. To reduce bias, we asked the participants to rate the

videos based on their personal appreciation, instead of guiding

them toward looking for specific artefacts or particular sets of

colours. The only emphasis was put on image quality con-

sistency along the videos. The participants were then guided

through a short training session to ensure they understood the

task at hand, and the controls to perform it. The experiment

took place in a dark room as recommended by ITU [55]. The

screen was colour-calibrated beforehand.

The responses were processed using a freely accessible

tool performing Thurstonian Case V scaling for pair-wise

comparison experiments developed by Perez-Ortiz et al. [56].

After the scaling, just-objectionable-difference scores (JOD),

as described by Perez-Ortiz et al., are obtained for each case.

A difference of 1 JOD means that one option is selected

over another with 75% probability (the mid-point between

random guess and certainty). The relationship between the

preference probabilities and the JOD follows the Gaussian

cumulative distribution function, and the exact JOD values are

found through a maximum likelihood estimation as explained

in the work of Perez-Ortiz et al. The outcome is summarised

in Table III and Fig. 16.

The results show that our demultiplexing is preferred by the

subjects more than the one by Dansereau. However, occasion-

ally, some participants mentioned in the comments that they

preferred the over-saturated colours obtained with Dansereau

et al.’s [10] method more than ours. The results indicate that

our hot pixel removal tool has a positive effect of similar

magnitude when applied to our demultiplexing. The colour

correction step has the biggest effect on the pleasing factor,

against all other settings, but even more significantly when

associated with the previous steps of our pipeline. Finally,

our final denoising step, in all scenarios, shows a level of

improvement comparable to that of our demultiplexing and

hot pixel removal tool. Overall, we can conclude that SAIs

processed using our pipeline are significantly more appealing

than when processed with the toolbox of Dansereau et al.

The significance of the results were also analysed by the

statistical significance analysis proposed by Perez-Ortiz et

al. and reported in Fig. 16. In this figure, the face values

indicate the JOD difference, JODi − JODj , between the ith

row and jth column, where positive values indicate that the

settings in the row are better than that in the column and

negative values indicate the opposite. Black boxes indicate

this difference is statistically significant. The results show that

overall, all of the proposed steps bring a statistically significant

difference compared to the previous step. We can easily see

TABLE III: Subjective experiment results: just-objectionable-
difference (JOD). First column is 0 we use it as reference for
comparison. Negative values indicate the reference (in this case Da)
was preferred over the method, while positive values indicate the
method was preferred over the reference. For explanation and settings
details refer to Section VII-C and Table I.

Da De DeH Re DaN DeN ReN

anky 0 0.64 0.61 2.05 -0.17 0.8 3.07

cchart 0 0.09 1.26 1.95 -0.1 0.38 2.44

desk 0 -0.01 -0.2 0.04 0.14 0.28 1.11

friends 0 0.8 0.7 2.21 0.92 1.31 2.11

magnets 0 0.67 1.25 2.69 0.84 0.94 3.37

bee_1 0 1.35 2.92 3.99 0.7 2.7 4.89

bee_2 0 7.95 8.1 10.03 0.33 8.75 10.14

chezed 0 -0.03 -0.16 1.12 0.41 0.05 1.26

duck 0 0.01 0.22 1.14 1.16 0.1 0.83

fruits 0 0.06 -0.63 1.05 0 -0.72 1.69

rose 0 0.55 0.49 1.5 0.71 0.25 1.63

la_guin 0 0.48 1.13 2.31 0.22 1.53 3.51

chicken 0 0.14 1.37 2.59 1.2 0.96 2.89

odette 0 -0.13 0.23 0.77 1.58 0.13 1.36

raoul 0 0.94 2.82 5.26 1.19 0.84 6.45

rodo 0 0.95 1.24 2.54 -0.44 1.54 1.98

ukulele 0 -1.15 -0.5 0.59 0.84 0.44 1.15

Overall 0 0.32 0.64 1.72 0.55 0.72 2.06

Fig. 16: Overall JOD score differences for all contents and subjects,
where the face value indicates JODi− JODj , between the ith row
and jth column. Positive values indicate the settings of the row are
better than that of the column. Black boxes specify that this difference
is statistically significant. Refer to Section VII-C for analysis.

that the whole pipeline (i.e., ReN ) is superior to all cases,

and recolouring is also found to be significantly better than

the DaN and DeN cases, which shows that the effect of

recolouring is critical for human perception.

D. Aesthetic Appeal

As an additional way to compare our results to the previous

state of the art, we use a recent neural metric by Talebi et

al. [57] that focuses on the aesthetic aspect of images called

NIMA. A summary of this analysis can be found in Table IV.

NIMA simulates an estimation of a group of people’s ratings

for aesthetic appeal based on its pleasing factor, and thus gives

an average score as well as standard deviation for each image.

We obtain our results by testing each individual SAI, and

average the results to get a unique score for each light field.

NIMA can also be used as a metric to measure noise level,
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TABLE IV: NIMA results. For better reading, indicated in bold black
are the best scores, and in italic blue the worst ones. The values
represent for each content the average of individual views’ scores.
For settings details refer to Section VII-C and Table I.

Da De DeH Re DaN DeN ReN

anky 4.67 4.57 4.57 4.81 5.49 5.47 5.56

cchart 5 5.05 5.05 5.07 5.23 5.3 5.32

desk 4.7 4.78 4.78 4.83 4.99 5.05 5.16

friends 5.15 5.4 5.39 5.52 5.25 5.47 5.61

magnets 4.22 4.12 4.12 4.27 4.96 4.85 4.97

bee_1 4.26 4.35 4.35 4.46 4.53 4.77 5.05

bee_2 4.5 4.36 4.36 4.46 4.47 4.46 4.6

chezed 5.27 5.33 5.29 5.32 5.34 5.4 5.47

duck 4.84 4.86 4.85 5 4.96 4.98 5.12

fruits 4.66 4.52 4.52 4.52 4.63 4.46 4.47

rose 4.93 4.88 4.88 4.84 4.75 4.67 4.66

la_guin 4.66 4.3 4.32 4.44 4.92 4.95 5.06

chicken 3.98 4.03 4.02 4.18 4.06 4.73 4.95

odette 4.89 4.78 4.79 4.87 4.97 4.84 4.95

raoul 4.24 4.16 4.16 4.31 4.12 4.19 4.7

rodo 4.38 4.38 4.37 4.36 4.39 4.38 4.37

ukulele 4.55 4.5 4.5 4.58 5.36 5.19 5.33

Average 4.64 4.61 4.61 4.7 4.85 4.89 5.02

but since we are interested in the pleasing factor and have

more dedicated metrics for noise analysis, we decided to use

it by resizing the images instead. As suggested by the authors,

each SAI is resized from 625×434 to 224×224 before being

evaluated by the pre-trained network, since this allows for the

most accurate results based on aesthetic quality.

From Table IV, we can see that, with few exceptions, the

results obtained using our full pipeline garner better scores

compared to those processed by the toolbox of Dansereau et

al [10]. On average, both the recolouring and denoising step

improve the image quality, except in the case of the fruits and

rose light fields in which Dansereau et al.’s method performs

better. Images obtained with Dansereau et al.’s method have

brighter, more saturated colours than those generated using

our approach and the NIMA network can associate these

unnatural colours with better aesthetic value. This is consistent

with comments made by some participants of the subjective

experiment described in Section VII-C.

E. Computation time

We report here the average computation times for each

part of the pipeline. Most of the steps were implemented

in Matlab, and the denoising was implemented in C++. Our

demultiplexing step takes ~2’05” per light field, whereas

in comparison the demultiplexing of Dansereau et al. takes

~1’10”. The difference is essentially explained by the White

Image-guided interpolation. The HPR step runs in ~1’40”.

Correspondences between neighbour views and with centre

view (2 sets per view to recolour) are computed in ~5’45”.

The recolouring step runs in ~234’ (~60” per SAI) and finally

the denoising step takes ~50’.

Possible optimisation includes parallelisation of the colour

correction step, as several rows could be processed at the

same time, once the centre column images are available.

GPU implementation would also speed up the process of the

propagation step, or the denoising. Finally, our implementation

of the recolouring uses all the available correspondences, when

a fraction could be selected to reduce the computation time,

albeit with reduced quality. Finally, in this paper we have

proposed using CIELAB space colour values when estimating

the colour transfer function to ensure the best results. Reducing

the colour space representation from three channels to two

could also provide significant computational speed up and

would be an interesting avenue for future investigation.

VIII. APPLICATIONS

A. Rendering

One of the first light field applications was the ability to

synthesise new images corresponding to novel viewpoints in

real time, without requiring any 3D model of the scene, as

described by Levoy et al. [1]. For each pixel in the novel

image, the intersection of the corresponding light ray and

the two light field planes is computed. The intersection with

the camera planes allows the closest available SAIs to be

found, while the closest pixel positions are computed from

the intersection with the image plane. The final value of a

pixel in the novel image is then computed by interpolating

between the nearest SAIs and the nearest pixels.

In this experiment, we rendered novel views corresponding

to a camera close to the object of interest and moving horizon-

tally from left to right. We show a few rendered images for the

cchart and bee_2 light fields in Figs. 17 and 18 respectively.

On the top row, results obtained for a light field decoded with

the toolbox of Dansereau et al. [10] (Da) are displayed, and on

the bottom row results obtained with our full pipeline (ReN ).

As rendered images are created from multiple source SAIs,

clear colour inconsistencies appear in images rendered from

Dansereau, but also in between the different novel viewpoints.

In addition, images rendered from our pipeline are less affected

by the dark SAIs in the corners of the light field.

B. Compression

Due to the large amount of information contained in light

fields, their compression is essential for a large scale adoption

of this image format. However, aforementioned artefacts in

existing plenoptic data are likely to reduce the efficiency

of traditional compression methods. In order to evaluate the

impact of our quality enhancement tools on the compression

performance, we have used a common light field compression

method presented by Liu et al. [58]. This method forms a

pseudo video sequence from the light field’s SAIs and encodes

the sequence using the HEVC video coding standard, therefore

taking advantage of the redundancies between SAIs.

For this experiment, we have encoded three different ver-

sions of each light field corresponding to Da, De and Re
in Table I (i.e. demultiplexing of Dansereau et al. [10],

our demultiplexing only, and our demultiplexing followed by

hot pixel removal and colour consistency correction). Each

version was encoded several times with different bitrates

by varying the QP parameters in HEVC over the values

{12, 16, 20, 24, 28, 32, 36}. In order to evaluate the quality of

the decoded light field, we compute the peak signal to noise

ratio (PSNR) using as a reference, the uncompressed light field

of the corresponding version. The experiment was performed
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Fig. 17: Novel viewpoints rendered from the cchart light field,
moving from left to right. Top: Dansereau et al. [10] (Da). Bottom:
ours (ReN ). Colour inconsistencies inside and across viewpoints are
highlighted in red.

Fig. 18: Novel viewpoints rendered from the bee_2 light field, moving
from left to right. Top: Dansereau et al. [10] (Da). Bottom: our full
pipeline (ReN ). Colour inconsistencies inside and across viewpoints
are highlighted in red.

for 12 light fields including 4 from the EPFL dataset, 4 from

the INRIA dataset and 4 from our captures (V-SENSE).

Note that the PSNR is computed from a different uncom-

pressed reference for each version. However, our experiments

in Section VII have shown that our modified demultiplex-

ing as well as our additional hot pixel removal and colour

consistency correction steps improve the subjective quality

in the uncompressed case. Here, we assume that the relative

perceived quality of the three version Da, De and Re are

unchanged when they are altered with similar compression

losses. Therefore, we consider that for the same PSNR scores,

the quality of the compressed light fields De and Re will not

be perceived as worse than that of Da. Furthermore, the results

in Table V show that, on average, the light fields in De and Re
require respectively 38% and 68.6% less bitrate to be encoded

with a similar PSNR as Da. This clearly demonstrates that the

TABLE V: Bitrate savings obtained for light fields extracted with
our demultiplexing (De) and with our hot pixel removal and colour
correction (Re). The gains are computed with the Bjontegaard metric
[59] with respect to light fields extracted using Dansereau et al’s
method [10] (Da). These results assume that similar PSNR for each
version (Da, De, Re) correspond to similar perceived quality.

De Re

EPFL

bikes -0.9% -29.1%
fountain&vincent_2 8.9% -33.7%
stone_pillars_outside -19.8% -59.2%

vespa 10.8% -50.1%

INRIA

bee_2 -67.7% -92.2%
bumblebee -36.1% -78.1%

duck -52.1% -80.3%
fruits -62.3% -81.1%

V-SENSE

cherry_tree -35.8% -55.4%
chicken -83.1% -98.7%

rodo -51.2% -72.2%
wine_bottles -67.3% -93.4%

Average -38% -68.6%

enhanced quality resulting from both our demultiplexing and

post processing steps also has a very beneficial impact on the

light field compression.

C. Super-Resolution

Light fields captured by lenslet cameras have a poor spatial

resolution due to the multiplexing of both spatial and angular

information on a single sensor. Spatial super-resolution of

light fields captured with a lenslet camera is thus a common

application.

In this experiment, we used the extension of the LFBM5D

denoising filter to spatial super-resolution presented by Alain

et al. [60]. This method uses the sparse coding of the LFBM5D

filter as a prior to solve the ill-posedness of super-resolution.

A two-step iterative algorithm alternating between a LBM5D

filtering step and a back-projection step is used to obtain the

super-resolved light field.

We show results for a single SAI of the raoul light field

in Fig. 19. The super-resolution result (right) is compared to

a simple bicubic upsampling (left). Results obtained with the

toolbox of Dansereau et al. [10] (Da) are displayed on the top

row, with results for our full pipeline (ReN ) on the bottom

row. The benefit of our pipeline is clearly visible, especially

in terms of hot pixels and noise removal. This is due to a

general side effect of super-resolution which amplifies the high

frequency corresponding to noise. This is common to all super-

resolution methods, not only the one used here.

D. Light Field Editing

Light field editing is another important application in light

field imaging, with works by Jarabo et al. [61] or Zhang et

al. [62]. To determine whether our proposed pipeline provides

any advantages for light field editing applications, we applied

the recent editing technique of Frigo et al. [63] to both our

processed light fields and those processed with Dansereau et

al.’s method [10]. The technique proposed by Frigo et al. [63]

allows the user to edit the centre SAI of the light field, either

via image recolouring or inpainting, and propagates the edits

to the remaining views using a structure tensor driven diffusion

on the EPIs. Some light field editing results can be seen in

Fig. 20.
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Fig. 19: Spatial super-resolution (right) of the raoul light field
compared to a simple bicubic upsampling (left). Top: Dansereau et
al. [10] (Da). Bottom: our full pipeline (ReN ).

Due to the strong colour differences between the centre SAI

and the external views of light fields obtained using Dansereau

et al.’s method (Da), the tensor-driven diffusion becomes

inaccurate at the edges of the light field, causing unwanted

warping of the SAIs (Fig. 20, column 1). The strong colour

differences between SAIs also means that when colours from

the centre SAI are propagated to other SAIs, they do not blend

seamlessly with the rest of the image, creating strong colour

inconsistencies (Fig. 20, column 1, see inpainting results).

Interestingly, we also found that when editing light fields

generated using our full pipeline, including denoising (ReN),

unwanted warping artefacts are also created (Fig. 20, column

3). As with any denoising algorithm, small image details can

also be removed with noise, some of which are needed by the

tensor diffusion step in the edit propagation software proposed

by Frigo et al. Removing these details creates inaccuracies and

causes artefacts. On the other hand, edit propagation results

applied to our pipeline before denoising (Re) are the best

(Fig. 20, column 2). The consistent colours across these light

fields ensure that the edits are propagated correctly, and that

no inconsistent colours can be seen in the edited SAIs, even

towards the outside of the light field. This indicates that if

using a similar editing approach, edit propagation should be

applied after our recolouring step, with denoising applied as

a final step.

E. Depth / disparity estimation

We evaluate here the performance of the proposed pipeline

on depth or disparity estimation, which is one of the flagship

applications for light fields. For that purpose we use 4 different

methods [64] [65] [66] [34] applied after every step of the

pipeline. For all methods we used the code provided by

the authors. The first method estimated the depth by simply

computing the slopes of the EPIs based on the light field

gradient [64]. Note that the code provided by the authors

implements the first step described in the paper and only

outputs a sparse estimation. The second method was designed

Colour Editing

Da Re ReN

Inpainting

Da Re ReN

Fig. 20: Light field editing results using the edit propagation method
of Frigo et al. [63]. For each light field, the top row shows the user
edits made to the centre SAI of the light field, with red lines indicating
the mask used during the propagation process. The second row shows
a sample SAI from the light field after the edit propagation.

to be robust to occlusions by analysing the statistics of angular

patches of the light field together with refocus cues [65].

The third method uses the spinning parallelogram operator

to estimate the slopes of the EPIs and provide a robust depth

estimate [66]. Finally, the fourth method adapted optical flow

techniques to estimate the disparity on row or columns of the

light field [34].

Fig. 21 shows the results for the four methods on the bee_2

light field. Results for 7 additional light fields are available

in the supplementary material. For each method, the depth or

disparity was estimated for the centre SAI of the light field

decoded with the toolbox of Dansereau et al. [64] without

(Da) and with denoising (DaN), our demultiplexing (De), and

our full pipeline without (Re) and with denoising (ReN). Note
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Centre SAI Da DaN De Re ReN

Fig. 21: Depth maps estimated for different steps of the pipeline on bee_2 using, from top to bottom: [64], [65], [66], and [34].

that all results were colour coded so that close objects appear

white, while far objects appear black.

Since no ground truth is available for the depth or disparity

maps, no objective evaluation could be conducted. For each

method, slight variations can be observed between the depth

or disparity maps corresponding to the different steps, but

no step seems to clearly deter or improve the performances.

Note that this is also true after the denoising step, even

though denoising is sometimes not recommended before such

applications. While in general denoising may smooth images,

the LFBM5D algorithm chosen in this paper can preserve

edges, which are useful features for most depth or disparity

estimation methods. Thus the proposed pipeline does not seem

to strongly impact the performances of depth or disparity map

estimation.

IX. CONCLUSION

We presented a high quality light field extraction pipeline

aimed at reducing or removing the various artefacts, colour

inconsistencies and noise that are prevalent in the typical

output from plenoptic cameras. We provide and analyse several

tools that can be used either on their own or in conjunction

with each other for increased effect, and we show that each of

the steps is necessary to ensure the best possible image quality.

We also highlight the importance of the order in which each

step is performed within the pipeline. We have proven, using

a number of metrics, as well as a subjective experiment, that

our results outclass those obtained from the previous state of

the art tools, and finally make the entirety of the sub-aperture

views usable by the user. We note that both the recolouring

and denoising steps in our pipeline can be applied to light

fields captured with camera arrays or gantries, and are not

limited to plenoptic light fields. Finally we demonstrate that

using higher quality light fields enhances the quality of the

results for a number of classic light field applications, and

therefore expect that this improvement will allow the research

community to be keener to use these cameras and data for

their work.
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