
Vol.:(0123456789)1 3

Quality and User Experience             (2020) 5:4  
https://doi.org/10.1007/s41233-020-00032-3

RESEARCH ARTICLE

Visual attention‑aware quality estimation framework 
for omnidirectional video using spherical Voronoi diagram

Simone Croci1 · Cagri Ozcinar1 · Emin Zerman1 · Sebastian Knorr2 · Julián Cabrera3 · Aljosa Smolic1

Received: 1 December 2019 
© Springer Nature Switzerland AG 2020

Abstract
Omnidirectional video (ODV) enables viewers to look at every direction from a fixed point and provides a much more 
immersive experience than traditional 2D video. Assessing the video quality is important for delivering ODV to the end-
user with the best possible quality. For this goal, two aspects of ODV should be considered. The first is the spherical nature 
of ODV and the related projection distortions when the ODV is stored in a planar format. The second is the interactive 
look-around consumption nature of ODV. Related to this aspect, visual attention, that identifies the regions that attract the 
viewer’s attention, is important for ODV quality assessment. Considering these aspects, in this paper, we study in particular 
objective full-reference quality assessment for ODV. To this end, we propose a quality assessment framework based on the 
spherical Voronoi diagram and visual attention. In this framework, a given ODV is subdivided into multiple planar patches 
with low projection distortions using the spherical Voronoi diagram. Afterwards, each planar patch is analyzed separately 
by a quality metric for traditional 2D video, obtaining a quality score for each patch. Then, the patch scores are combined 
based on visual attention into a final quality score. To validate the proposed framework, we create a dataset of ODVs with 
scaling and compression distortions, and conduct subjective experiments in order to gather the subjective quality scores and 
the visual attention data for our ODV dataset. The evaluation of the proposed framework based on our dataset shows that 
both the use of the spherical Voronoi diagram and visual attention are crucial for achieving state-of-the-art performance.

Keywords Quality assessment · Omnidirectional video · 360° video · VR video · Spherical Voronoi diagram · Visual 
attention · Scaling distortion · Compression distortion

Introduction

Omnidirectional video (ODV), also known as 360° or VR 
video, can be conceived as a spherical video where the view-
ers are placed at its center, allowing them to look at every 
direction. ODV is ideally viewed with a head-mounted dis-
play (HMD) that shows only the content in the direction 
where the viewer is looking at. In contrast to traditional 2D 
video, this emerging media type provides higher immersive 
and interactive viewing experience. Thanks to its immersive 
nature, ODV can be used in different applications such as 
entertainment [1, 2], communication [3], health-care [4], 
and education [5].

Compared to traditional 2D video, ODV introduces new 
technical challenges especially for storage and transmission 
[3]. For example, due to the large field of view of ODV [6], 
higher video resolution is necessary, and consequently, also 
higher memory requirements are demanded. For the devel-
opment and evaluation of new solutions to these technical 
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challenges, like new compression and streaming approaches 
[3], subjective and in particular objective quality assessment 
methods are necessary to ensure a high quality of experi-
ence (QoE) [7]. There are already quality metrics for ODV 
like [8–13], but these metrics have limited correlation with 
the subjective quality scores. Thus, in order to improve the 
quality estimation performance, in this paper we propose a 
new quality estimation framework.

Quality assessment for ODV requires to consider its 
unique aspects. First, ODV is spherical in nature, but it is 
stored and transmitted in planar formats to be compatible 
with the existing video delivery pipelines. Different projec-
tion techniques can be used to map the spherical content to 
the 2D plane [14], such as equirectangular projection (ERP) 
and cubemap projection (CMP). These projections inevita-
bly introduce distortions which must be taken into account 
to accurately estimate the video quality [15]. Second, HMDs 
allow the viewer to freely look around a scene [16], but they 
show only a part of the video, called viewport. In [11], it 
was found that less than 65% of ODV area is viewed by the 
viewers and consequently only such a partial region deter-
mines the perceived quality. Therefore, it is important to 
consider the viewing behavior while exploring ODV with an 
HMD [17–19], and to identify in particular the ODV regions 
that attract the visual attention [1, 16, 20–22] and are con-
sequently viewed with high probability. Various previous 
research works emphasize the importance of visual attention 
in quality assessment [15, 23], and existing studies show that 
visual attention improves the performance of quality assess-
ment [11–13, 24, 25].

In this paper, we propose an objective full-reference 
quality assessment framework that takes into account the 
spherical nature of ODV and its viewing characteristics. 
The framework first subdivides the ODV into planar patches 
using the spherical Voronoi diagram [26, 27]. These pla-
nar patches are characterized by low projection distortions, 
and we call them planar Voronoi patches. Afterwards, the 
framework applies a quality metric for traditional 2D video 
to each planar Voronoi patch, obtaining a quality score for 
each patch. To further consider the viewing characteristics 
of ODV, the proposed framework integrates visual attention 
by multiplying each patch score with a weight that accounts 
for the probability of the patch being viewed. Finally, the 
framework averages the weighted patch scores obtaining the 
final ODV quality score. The results show that both the ODV 
subdivision into planar Voronoi patches and the integration 
of visual attention improve the performance of ODV quality 
assessment.

This paper extends in several ways the contributions of 
our previous conference paper [28], where the original Voro-
noi-based framework without visual attention was initially 
proposed. These additional contributions are as follows:

• We integrate visual attention into the original Voronoi-
based quality assessment framework;

• We extend the ODV quality dataset introduced in our 
previous study with 45 new distorted videos. In total, we 
create an ODV quality dataset of 120 distorted ODVs 
with scaling and compression distortions from eight 
undistorted reference ODVs, and we conduct a second 
subjective experiment in order to gather the subjective 
quality scores and the viewport trajectories for the new 
ODVs;

• We perform an extensive analysis of the parameters of 
the proposed quality assessment framework, such as the 
number and angular resolution of the planar Voronoi 
patches, the visual attention estimation method, and the 
temporal pooling of the frame scores;

• We perform a comparative analysis with existing quality 
metrics.

Our new dataset and the code of the proposed framework 
are made publicly available with this paper.1 We expect that 
the developed framework and the established dataset will be 
beneficial for future research in ODV quality assessment, 
compression, and streaming.

The rest of this paper is organized as follows. Sec-
tion “Related work” discusses the related work on both sub-
jective and objective ODV quality assessment. Then, Sec-
tion “Proposed quality assessment framework” describes 
the proposed quality assessment framework. The details of 
our extended ODV dataset and the related subjective exper-
iments are explained in Section “Dataset and subjective 
experiments”. Based on the proposed dataset, Section “Anal-
ysis and evaluation” presents the study of the framework 
parameter space and the extensive comparative analysis with 
several existing quality metrics. Finally, Section “Conclu-
sion” concludes the paper.

Related work

Although there are many studies about subjective and objec-
tive ODV quality assessment, in the following, we outline 
only those that are most related to our work together with 
their limitations. For a comprehensive overview of recent 
research in the field, we recommend the overview paper of 
Li et al. [29].

1 https ://v-sense .scss.tcd.ie/resea rch/voron oi-based -objec tive-metri 
cs/.

https://v-sense.scss.tcd.ie/research/voronoi-based-objective-metrics/
https://v-sense.scss.tcd.ie/research/voronoi-based-objective-metrics/
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Subjective quality assessment

Creating datasets and gathering subjective quality scores 
are fundamental requirements to understand the perceived 
quality of distorted omnidirectional images [23] and vid-
eos [11, 30–32]. For this purpose, Li et al.[11] conducted a 
subjective experiment to establish an ODV quality dataset. 
Their dataset contains subjective scores for 600 compressed 
ODVs across 221 participants. Eye and head movement 
data were also gathered during the subjective experiment. 
Another recent work [30] established a dataset that contains 
subjective quality scores of 30 participants across 50 differ-
ent ODVs compressed with the HEVC/H.265 video cod-
ing standard [33]. In this work, the optimal resolution of 
ODVs displayed by the HMD was used in order to reduce 
the sampling distortions when extracting the viewport from 
the ODV. Furthermore, Singla et al.[31] and Schatz et al.[32] 
conducted subjective experiments to assess the perceived 
quality of ODV streaming.

At the time of writing this paper, most of the existing 
studies related to quality assessment, e.g., [15, 30, 34–36], 
consider only compression distortions of ODVs with low 
spatial resolution due to the computational complexity of 
ODV rendering. However, hardware for the rendering of 
8K ODV is now on the market, providing higher quality of 
experience. Thus, in this paper, we extend our ODV data-
set established in [28], which is based on the typical visual 
distortions in adaptive streaming systems, namely, compres-
sion and scaling distortions, applied to uncompressed ODVs 
with 8K resolution. We also organize a second subjective 
experiment to collect the subjective scores together with the 
viewport trajectories for the new ODVs.

Objective quality assessment

Many quality metrics developed for ODV are the extended 
versions of the traditional PSNR metric. Sun et al.[8], for 
instance, developed the weighted spherical PSNR metric 
(WS-PSNR) with weights that consider the projection dis-
tortions of the pixels in the planar format. The Craster para-
bolic projection PSNR metric (CPP-PSNR) [9] computes 
the PSNR in the Craster parabolic projection characterized 
by low projection distortions. Furthermore, the Spherical 
PSNR metric (S-PSNR) [10] estimates the PSNR for uni-
formly sampled points on the sphere. This quality metric has 
two different variants, namely, S-PSNR-NN and S-PSNR-
I. When sampling pixels, they use the nearest neighbor or 
bicubic interpolation, respectively.

Subjective quality studies reported various findings 
about the PSNR-based quality metrics for ODV. On one 
hand, Zhang et al.[30] and Sun et al.[15] recently reported 
that the existing PSNR-based quality metrics for ODV 
have superior performance than the traditional PSNR. On 

the other hand, Tran et al.[35] claimed that the traditional 
PSNR is the most appropriate metric for quality evaluation 
in ODV communication. Furthermore, Upenik et al.[37] 
showed that the existing PSNR-based quality metrics for 
ODV do not have high correlation with subjective scores. 
A similar conclusion was reached in another study [34].

In addition to the PSNR-based metrics, the structure 
similarity index metric (SSIM) was also extended to ODV 
by Chen et al.[38] based on weights that take into account 
the projection distortions. Moreover, two recent studies 
[28, 36] investigated the performance of the video mul-
timethod assessment fusion metric (VMAF) [39] applied 
to ODV, which is a metric for traditional 2D video devel-
oped to evaluate the distortions introduced by the adaptive 
streaming systems (i.e., compression and scaling distor-
tions), and characterized by high correlation with subjec-
tive scores [40–42]. The work in [36] created a dataset 
of ODVs in ERP compressed using constant quantiza-
tion parameters, and showed that VMAF can be used as a 
metric also for ODVs without modifications. Differently, 
in our previous work [28], we showed based on an ODV 
dataset with compression and scaling distortions, that 
the performance of VMAF can be improved using planar 
Voronoi patches.

In our previous work [28], we did not only study 
VMAF, but we developed a new objective quality assess-
ment framework for ODV based on planar Voronoi 
patches. With our framework existing quality metrics for 
traditional 2D video (e.g., VMAF) can be applied to ODV 
based on planar Voronoi patches achieving high correla-
tion with subjective scores. However, in our framework we 
did not consider visual attention.

Visual attention in objective quality assessment

As already shown in [15, 23], visual attention is crucial 
when evaluating the quality of ODV. Similarly, Li  et 
al.[11] showed that the incorporation of head and eye 
movement data in objective quality assessment, more spe-
cifically in PSNR, increases the quality prediction per-
formance. Upenik et al.[12] also proposed to incorporate 
visual attention in PSNR for ODV quality assessment. Fur-
thermore, Ozcinar et al.[13] developed a quality metric 
based on PSNR that considers visual attention and pro-
jection distortions, with the aim of ODV streaming opti-
mization. However, these works [11–13] that use visual 
attention are based on PSNR, which does not correlate 
well with subjective scores. Differently, in this paper, we 
develop a new quality assessment framework, which works 
with visual attention and robust quality metrics for tradi-
tional 2D video.
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Proposed quality assessment framework

This section introduces the proposed framework for objec-
tive full-reference quality assessment based first on pla-
nar Voronoi patches obtained with the spherical Voronoi 
diagram [26], and second on visual attention. Initially, we 
introduce the planar Voronoi patches, and then we describe 
the original Voronoi-based framework presented in [28] 
and the new proposed Voronoi-based framework inte-
grated with visual attention.

Planar Voronoi patches

For the extraction of M planar Voronoi patches from a 
given ODV, the spherical Voronoi diagram [26] of M 
evenly distributed points on the sphere [27] is computed 
as illustrated in Fig. 1a, b. The M evenly distributed points 
�k =

(
Xk, Yk, Zk

)
 on the sphere, where k ∈ [0,M − 1] , are 

obtained according to the following equations:

where �k is the azimuthal angle and dk is the distance of the 
point from the z-axis.

(1)�k = k�
�
3 −

√
5

�
,

(2)Zk =
(
1 −

1

M

)(
1 −

2k

M − 1

)
,

(3)dk =

√
1 − Z2

k
,

(4)Xk = dk cos(�k) and

(5)Yk = dk sin(�k),

The spherical Voronoi diagram defines for each input 
point �k the spherical patch �k on the surface of the sphere 
�S that contains all the points that are closer to �k than to 
any of the other input points �l:

where dS(�,�k) is the spherical distance between the point 
� and the point �k , i.e., the length of the shortest path on the 
surface of the sphere connecting these two points. Notice 
that by using evenly distributed points �k on the sphere, 
we guarantee that the spherical Voronoi patches �k have 
approximately equal size.

After the computation of the spherical Voronoi diagram, 
for each spherical Voronoi patch �k a planar Voronoi patch 
� ′

k
 is extracted from the ODV, as illustrated in Fig. 1c. This 

operation is obtained by first positioning the plane of the 
planar patch � ′

k
 on the centroid of the spherical patch �k , 

tangent to the sphere. The points on the sphere and the pla-
nar patch � ′

k
 are related by central projection, and the pixels 

of � ′
k
 are computed by sampling the ODV in ERP using 

bilinear interpolation. The angular resolution of each planar 
Voronoi patch � ′

k
 is defined by the pixels per visual angle, a 

parameter that is kept constant for each patch.

Original Voronoi‑based quality framework

The quality framework presented in this section extends 
full-reference metrics for traditional 2D video to ODV. 
The extended metrics for ODV are called VI-METRIC, 
where VI stands for Voronoi, and METRIC ∈ { PSNR , 
SSIM,MS-SSIM,VMAF,…} is a full-reference metric for 
traditional 2D video. Since we are dealing with full-refer-
ence quality assessment, the inputs of the framework are 
a distorted (e.g., compressed) ODV and the corresponding 
undistorted reference ODV. Initially, the quality framework 

(6)�k = {� ∈ �S ∣ dS(�,�k) ≤ dS(�,�l) ∀l ≠ k},

Fig. 1  Figures of the proposed Voronoi-based quality assessment framework, showing patch extraction and patch metric score calculation
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extracts M planar Voronoi patches � ′
k
 from the distorted 

ODV and other M from the reference ODV. Then, a full-
reference metric for traditional 2D video is applied to the 
planar Voronoi patches � ′

k
 of the distorted and reference 

ODV, obtaining M patch scores �k as illustrated in Fig. 1d. 
In our study, we apply the following full-reference metrics: 
PSNR, SSIM [43], MS-SSIM [44], and VMAF [39]. Since 
these metrics take rectangular video frames as input, we 
modified the first three of them, so that they can deal with 
any patch shape. For VMAF we took the bounding box of 
the patch as input, as it is not straightforward to modify 
VMAF for different patch shapes. In the end, the final ODV 
quality score is obtained by computing the arithmetic mean 
of the patch scores �k as follows:

Proposed Voronoi‑based framework integrated 
with visual attention

When viewing an ODV with an HMD, only a part of the 
ODV, the so-called viewport, is visible, and usually different 
viewers tend to look only at particular regions that attract 
their visual attention. Since different parts of an ODV can be 
of different quality, it is important during quality assessment 
to give more weight to the regions that attract the visual 
attention, i.e., the regions that are most likely to be viewed. 
A way to represent these regions is the visual attention map, 
which defines for each pixel of the ODV the probability of 
being viewed.

To take visual perception into consideration for ODV 
quality assessment, we now propose to integrate visual 
attention into the original Voronoi-based framework, and 
refer to its metrics as VI-VA-METRIC, where VA stands 
for visual attention. Different methods can be used for the 
computation of visual attention maps. We investigate the 
effects of different visual attention estimation methods in 
Section “Investigation of applying different visual attention 

(7)VI-METRIC =

∑M−1

k=0
�k

M
.

estimation methods”. Figure 2 shows a sample visual atten-
tion map generated using Kent method [22].

For the computation of the VI-VA-METRICs, first a qual-
ity score for each video frame of the distorted ODV is com-
puted based on visual attention, and then the frame scores 
are pooled into a final quality score. For the computation of 
the frame scores, initially M planar Voronoi patches � ′

k
 are 

extracted from each frame i of the distorted and reference 
ODV. Then, a full-reference metric for traditional 2D video 
is applied to the planar Voronoi patches � ′

k
 of each frame i, 

obtaining M patch scores �i,k for each frame. At this point, 
the visual attention map �i of each frame i of the distorted 
ODV is estimated. Then, M planar Voronoi patches � ′

k
 are 

extracted from each visual attention map �i , and the sums 
�i,k of the visual attention pixel values inside each patch � ′

k
 

of each map �i are computed. The sum �i,k is related to the 
probability of patch � ′

k
 of frame i being viewed. Next, the 

frame scores Ti are obtained through a weighted average of 
the patch scores �i,k using the visual attention sums �i,k as 
weights according to the following equation:

In the last step, the frame scores Ti are combined using a 
pooling approach P obtaining the final video score:

where N is the number of frames. Different pooling 
approaches P can be applied, like the arithmetic and har-
monic mean, the median, the minimum, etc. In this study, 
we analyze the following metrics obtained with the frame-
work: VI-VA-PSNR, VI-VA-SSIM, VI-VA-MS-SSIM, and 
VI-VA-VMAF.

Figure 2 shows the patch scores obtained by applying 
VMAF to 20 Voronoi patches, the visual attention map 
computed by the Kent distribution method [22] from the 
viewport trajectories obtained in our subjective experiments, 
and the visual attention patch weights �i,k corresponding to 
20 Voronoi patches. As can be seen in the figure, different 

(8)Ti =

∑M−1

k=0
�i,k�i,k

∑M−1

k=0
�i,k

.

(9)VI-VA-METRIC = P(T0, T1,… , TN−1),

Fig. 2  Visualization of the VMAF patch scores, visual attention map, and the visual attention patch weights �
i,k . Please refer to the color bars 

beside the figures for the used color code
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regions of the ODV can have noticeably different qualities, 
and also clearly different visual attention values. For this 
reason, we integrate visual attention in our proposed quality 
assessment framework in a way to give more importance to 
patches that attract visual attention.

Dataset and subjective experiments

In this section, we introduce our dataset, and we describe the 
technical details of the two subjective experiments that we 
conducted in order to collect the subjective quality scores 
and the viewport trajectories for our dataset. This section 
terminates with the analysis of the collected subjective data.

Omnidirectional video quality dataset

Considering a streaming application scenario, we built our 
dataset using ODVs with different spatial resolutions and 
different compression levels. For our dataset and subjec-
tive experiments, we first selected a total of nine uncom-
pressed reference ODVs in YUV420p format of 10 sec. 
length, 8K × 4K ERP resolution, and with different charac-
teristics. These ODVs were selected from the videos of the 
joint video exploration team of ITU-T VCEG and ISO/IEC 
MPEG [45–47]. The selected videos are Basketball, Dancing, 
Gaslamp, Harbor, JamSession, KiteFlite, SkateboardTrick, 
Train, and Trolley. Sample frames of these videos are shown 
in Fig. 3. Basketball, Dancing, Harbor, JamSession, KiteFlite 
were rated in the first subjective experiment already reported 
in [28], and Gaslamp, SkateboardTrick, Trolley were rated in 
the second experiment reported here. The Train sequence was 
used only as training material in both experiments.

After the selection of the nine reference ODVs, they 
were downsampled to three different resolutions in ERP for-
mat: 8128 × 4064 , 3600 × 1800 , and 2032 × 1016 . For the 
downsampling, we used the bicubic scaling algorithm of the 
FFmpeg software (ver. 4.0.3-1 18.04). Next, the ODVs were 

compressed with the HEVC/H.265 video coding standard [33]. 
For this, we used the libx265 codec (ver. 2.9) [48] in FFmpeg 
[49] with the video buffering verifier method to set the tar-
get bitrates. As this database is created to understand possible 
cases which might be encountered in an adaptive streaming 
scenario, to ensure constant bitrate, each ODV was compressed 
using two-pass encoding with 150 percent constrained vari-
able bitrate configuration, following the recommendations of 
streaming providers [50]. We also defined the buffer size dur-
ing encoding to limit the output bitrate to twice the maximum 
bitrate for handling large bitrate spikes. To avoid any possible 
impact of the unknown resampling algorithm used by the video 
player, we upsampled the decoded ODVs to 8128 × 4064 reso-
lution using the bicubic scaling algorithm of FFmpeg. For the 
downsampling and compression of the reference ODVs, we 
used the following FFmpeg commands:

Fig. 3  Sample frames of the nine reference ODVs used in the subjective experiments. The top five ODVs were rated in the first subjective exper-
iment [28], and the bottom left three ODVs were rated in the second subjective experiment. Train was used for the experiment training
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where

• iVideoFn: filename of input video,
• iVideoRes: resolution of input video,
• iVideoFormat: format of input video (in our case 

yuv420p),
• iVideoFramerate: framerate of input video,
• iVideoFrames: number of frames of input video,
• oVideoFn: filename of output video,
• oVideoRes: resolution of output video,
• oVideoBitRate: target bitrate of output video in Kbps,
• oVideoMaxRate: maximum bitrate in Kbps (in our case 

1.5 × oVideoBitRate),
• oVideoBufSize: buffer size in Kbps (in our case 

2 × oVideoMaxRate).

To ensure that the distorted ODVs within the database are 
uniformly distributed across different quality levels, five 
different target bitrates were selected independently for 
each reference ODV in a pilot test with three experts using 
HTC Vive HMD. For this pilot test, before encoding, the 
reference ODVs were resized to the resolution 3600 × 1800 , 
which was found to be the optimal ODV resolution for 
HTC Vive HMD by Zhang et al.[30], after their calculation 
considering the HMD’s display resolution and its field of 
view. The ODVs were then encoded with different bitrates 
∈ {500, 1000, 2000, 5000, 7000, 10000, 13000, 15000} Kbps, 
and among them five different bitrates were selected in 
the pilot test to correspond to five different quality levels, 

namely, “bad”, “poor”, “fair”, “good”, and “excellent”, 
which are reported in Table 1.

Subjective experiments

This section describes the technical details of the two sub-
jective experiments that we organized. Their main charac-
teristics are shown in Table 2.

Experiment setup

The subjective experiments were conducted in a dedicated 
experiment room equipped with an HTC Vive HMD, which 
was used to present the stimuli to the viewers. Participants 
were seated in a swivel chair and allowed to turn freely. To 
ensure that the participants could vote without removing 
the HMD, we used the Virtual Desktop application. Virtual 
Desktop is an ODV player and an application that enables 
the users to watch and interact with the desktop using the 
HMD and VR controllers. Using this application and the 
open-source MATLAB GUI presented in [51, 52], partici-
pants were able to vote each stimulus. Additionally, with 
a special application, the viewport trajectories were also 
recorded during the presentation of each stimulus for the 
computation of the visual attention maps.

Methodology

The modified-absolute category rating (M-ACR) [53] meth-
odology was chosen for our subjective experiments in order 
to lengthen the exposure to the stimuli, since in this method-
ology each stimulus is presented twice with a short mid-gray 
screen (in our case a three second long one) between the two 
presentations. The reference sequences were also included in 
the subjective experiments as hidden references. That is, the 
participants were not told of reference sequences, and they 
voted the hidden references as any other stimulus.

The subjective quality scores for all the videos were col-
lected in two experiments with different ODVs and partici-
pants. The first experiment, which was presented in [28], 
comprised of two sessions of 30 minutes, one hour in total. 
The second experiment had only one session of 30 minutes. 
At the beginning of both experiments, there was a train-
ing phase when the Train video sequence with five differ-
ent quality levels was displayed. After the training phase, 
the experiment ODVs were randomly displayed, and the 
quality scores were assigned by the participants based on 
a continuous grading scale in the range [0,100], with 100 
corresponding to the best score, as recommended in ITU-R 
BT.500-13 [54].

Table 1  Bitrates (in Kbps) for the selected ODVs

ODV BR1 BR2 BR3 BR4 BR5

Basketball 500 1000 2000 5000 13000
Dancing
Harbor 500 1000 2000 7000 13000
JamSession
Gaslamp
SkateboardTrick
Trolley
KiteFlite 500 1000 5000 7000 13000

Table 2  Statistics of the stimuli and the participants in the subjective 
quality assessment experiments

Subjective 
Experiment

# of Stimuli # of 
Partici-
pants

Min – Mean – Max 
Age

Ratio of 
women 
(%)

First [28] 75 + 5 Ref 24 22 – 29.7 – 38 16
Second 45 + 3 Ref 23 25 – 31.6— 42 26
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Participants

24 participants, 20 males and four females, took part in 
the first experiment. These participants were aged between 
22 and 38 years with an average of 29.7 years. 23 partici-
pants, 17 males and six females, took part in the second 
experiment. These participants were aged between 25 and 
42 years with an average of 31.6 years. The gathered quality 
scores were screened for outliers using the outlier detec-
tion method recommended in ITU-R BT.500-13 [54]. Three 
outliers in the first experiment and two outliers in the sec-
ond experiment were found and removed. All participants 
were screened for visual acuity and found to have normal or 
corrected-to-normal vision.

Subjective quality analysis

To represent the subjective quality of each stimulus, dif-
ferential mean opinion scores (DMOS) [55] are calculated 
by applying the standard approach described in [56]. First, 
the difference scores are computed as: dij = sr

ij
− sij , where 

sij and sr
ij
 are the raw subjective score assigned by partici-

pant i to the distorted ODV j and the raw subjective score 
assigned to the corresponding hidden reference ODV, 
respectively. These difference scores dij are converted to 
z-scores as follows: zij = (dij − �i)∕�i , where �i and �i are 
the mean and standard deviation of the raw scores assigned 
by the participant i. Then, the z-scores are linearly rescaled 
in the interval [0,100] as follows: z�

ij
= 100(zij + 3)∕6 . The 

rescaling is based on the assumption that the z-scores zij 
are normally distributed with mean equal to zero and 
standard deviation equal to one, which means, that 99% of 
the z-scores zij are in the interval [-3,3], and consequently 
99% of the rescaled z-scores z′

ij
 are in the interval [0,100]. 

The final DMOS value of ODV j is then obtained by aver-
aging the rescaled z-scores z′

ij
 of the K participants exclud-

ing the outliers as follows:

Small DMOS values indicate that the distorted stimulus is 
closer to the reference, and hence small DMOS is better. 
Figure 4 shows the DMOS values of the ODVs included in 
the experiments. As expected, we can notice that there is 
an inverse relationship between DMOS and bitrate. From 
the plots we can also see that the ODVs with highest spatial 
resolution have the worst quality (highest DMOS) for low 
bitrate and the best quality for high bitrate. This shows that 
the 8128 × 4064 ODVs are coarsely compressed at the low 
bitrates due to the high number of pixels present. As the 
bitrate increases, the perceived quality for these videos gets 
better. Conversely, the perceived quality of the 2032 × 1016 
ODVs becomes the worst at high bitrates, due to the scaling 
distortions [3].

Visual attention analysis

Table 3 shows the comparison between the visual atten-
tion maps of the reference ODVs and the corresponding 
ODVs with resolution 8128 × 4064 and encoded at the five 
bitrates reported in Table 1. For the comparison, first uni-
formly distributed points on the sphere are sampled from 
the visual attention maps, and then the Pearson’s linear 
correlation coefficient (PLCC) and the Kullback–Leibler 
divergence (KLD) are applied to the sampled points [18]. 
Large PLCC values and small KLD values correspond to 
high similarity. As can be noticed from Table 3, the visual 
attention maps of the reference and corresponding dis-
torted ODVs can be different, especially for the smallest 
bitrate BR1. This can also be noticed in Fig. 5, where the 
visual attention maps of the JamSession reference ODV 
and the corresponding encoded ODVs at the smallest and 
largest bitrates with resolution 8128 × 4064 are shown. In 
Table 3, there is also the average of the PLCC and KLD 

(10)DMOS j =
1

K

K∑

i=1

z�
ij
.

Table 3  Pearson’s linear 
correlation coefficient 
(PLCC) and Kullback-Leibler 
divergence (KLD) computed 
between the visual attention 
maps of the reference ODVs 
and the corresponding ODVs 
with resolution 8128 × 4064 
and encoded at the five bitrates 
reported in Table 1

ODV BR1 BR2 BR3 BR4 BR5

PLCC KLD PLCC KLD PLCC KLD PLCC KLD PLCC KLD

Basketball 0.8914 0.5939 0.9134 0.6394 0.8838 0.7101 0.9019 0.8640 0.9195 0.6801
Dancing 0.6410 1.3625 0.6911 1.0891 0.7226 1.2005 0.7841 0.7137 0.7205 1.0115
Harbor 0.7316 0.7843 0.7134 0.6718 0.8341 0.4486 0.8348 0.5310 0.8536 0.4550
JamSession 0.5781 1.4356 0.8312 0.7140 0.7313 0.8753 0.8640 0.5990 0.8457 0.4435
KiteFlite 0.7273 0.8362 0.8136 1.0684 0.8486 0.5353 0.8352 0.6136 0.8557 0.5614
Gaslamp 0.7769 0.8339 0.7981 0.6213 0.8457 0.4773 0.8739 0.5137 0.8421 0.6517
SkateboardTrick 0.8705 0.7316 0.8713 1.0611 0.9413 0.4834 0.8901 0.5517 0.8976 0.3951
Trolley 0.8586 0.8713 0.7891 0.9610 0.8232 0.8207 0.8945 0.5879 0.9162 0.5906
Average 0.7594 0.9312 0.8026 0.8533 0.8288 0.6939 0.8598 0.6218 0.8564 0.5986



Quality and User Experience             (2020) 5:4  

1 3

Page 9 of 17     4 

Fig. 4  Bitrate vs. DMOS plots of each ODV used in the subjective experiments. The vertical bars show 95% confidence intervals

Fig. 5  Comparison of the visual attention maps of the JamSession reference ODV in (a) and two corresponding encoded ODVs in (b) and (c). 
See the color bar in (d) for the used color code
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values for each bitrate. It can be seen that by increasing the 
bitrate the average PLCC increases while the average KLD 
decreases. Based on these observations and to ensure the 
most accurate results, in our framework we use, for each 
undistorted and distorted ODV, the corresponding visual 
attention map and not only the visual attention maps of the 
undistorted ODVs.

Analysis and evaluation

In this section, we first determine the optimal parameter 
values of the proposed framework, and then we compare 
the metrics of the proposed framework with existing qual-
ity metrics. With this aim, we use our ODV dataset with 
the gathered subjective quality scores presented in Sec-
tion “Dataset and subjective experiments”, and we analyze 
the correlation between the metric scores and the subjec-
tive scores. For the correlation analysis, we first convert 
the metric scores into the subjective scores by fitting a 
logistic function. We use the logistic function proposed in 
[57], and defined as follows:

where s′ is the predicted subjective score of the metric score 
s, and �1,…,4 are the parameters that are estimated during the 

(11)s� =
�1 − �2

1 + e
−

S−�3

‖�4‖

+ �2,

fitting. Here, the subjective score predicted by the logistic 
function is the reversed DMOS (i.e., subtracted from 100).

To evaluate how well the logistic function predicts the 
subjective scores, i.e., how well the metric estimates the sub-
jective quality, the following measures are applied to the 
real and predicted subjective scores: Pearson’s linear cor-
relation coefficient (PLCC), Spearman’s rank ordered cor-
relation coefficient (SROCC), root mean squared prediction 
error (RMSE), and mean absolute prediction error (MAE). 
PLCC and SROCC measure the prediction accuracy and the 
monotonicity, respectively. The larger they are, the more 
accurate and monotonic the prediction is. For RMSE and 
MAE, the smaller they are, the better the prediction is.

To visualize the relationship between the metric and 
subjective scores, sample plots are shown in Fig. 6 for 
the metrics SSIM and VMAF applied to the ERP format 
( SSIM ERP and VMAF ERP ), and in the original and proposed 
Voronoi-based quality assessment framework. In these plots, 
the increase of the correlation between the metric scores 
and DMOS is noticeable for the VI-METRICs and the VI-
VA-METRICs compared to the metrics calculated in ERP 
format.

Selection of optimal parameter values 
for the proposed framework

In this section, we fine-tune the proposed framework by 
determining the optimal parameter values.

Fig. 6  Metric versus subjective score plots with the fitted logistic functions. Red points indicate the data points, and blue lines indicate the logis-
tic functions
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Estimation of the optimal angular resolution and number 
of planar Voronoi patches

We first analyze the two main parameters of the original and 
proposed frameworks that have an impact on the accuracy 
of the quality estimation, namely, the angular resolution and 
the number of the planar Voronoi patches.

For the Voronoi-based metrics obtained with the origi-
nal and proposed framework, i.e., VI-METRICs and VI-
VA-METRICs, Table 4 shows PLCC and SROCC based on 
different parameter values. Three angular resolutions are 
investigated, namely {10, 15, 20} pix/deg, which are close 
to the resolution of the HTC Vive HMD used in our subjec-
tive experiments. Moreover, we also consider three different 
numbers of planar Voronoi patches, that is, M = {10, 15, 20}. 
For the estimation of the visual attention maps of the VI-VA-
METRICs, we use the Kent method [22].

As can be seen in the table, the reduction of the patch 
resolution improves the performance of the Voronoi-based 
metrics in most of the cases. For the other cases, the per-
formance remains almost constant. On the other hand, 

increasing the number of patches seems to positively influ-
ence the performance of the Voronoi-based metrics almost 
always, except for VI-PSNR and VI-VA-PSNR. This can 
be explained by the reduction of the projection distortions 
when the number of patches increases and consequently 
the patch size decreases. For the VI-VA-METRICs that use 
visual attention, the improvement of the performance can 
also be explained by the fact that with more patches the 
visual attention weights �i,k are localized to smaller regions 
and consequently more accurate.

As a result of this analysis, we select 10 pix/deg and 
20 patches ( M = 20 ) as the optimal parameter values for 
our proposed framework. We use these two parameters 
for the rest of this paper. Please note that although we 
select these optimal parameter values, independently of 
the studied parameter values, the Voronoi-based metrics 
are characterized by a better performance than the perfor-
mance of the corresponding original metrics for traditional 
2D video applied to the ERP and CMP formats, as shown 
later in Table 7.

Table 4  PLCC and SROCC of 
the Voronoi-based metrics with 
different angular resolutions 
and numbers of patches. The 
best performance values for 
each resolution (i.e., each row) 
are in bold, while the best 
performance values among all 
the metrics are in italics

Metrics Resolutions 10 patches 15 patches 20 patches

PLCC SROCC PLCC SROCC PLCC SROCC

VI-PSNR 10 pix/deg 0.8700 0.8584 0.8775 0.8634 0.8676 0.8551
15 pix/deg 0.8700 0.8584 0.8775 0.8636 0.8675 0.8553
20 pix/deg 0.8700 0.8584 0.8775 0.8634 0.8676 0.8553

VI-SSIM 10 pix/deg 0.8757 0.8667 0.8821 0.8763 0.8823 0.8763
15 pix/deg 0.8423 0.8301 0.8509 0.8411 0.8516 0.8414
20 pix/deg 0.8132 0.7995 0.8227 0.8072 0.8237 0.8079

VI-MS-SSIM 10 pix/deg 0.9468 0.9432 0.9488 0.9446 0.9486 0.9450
15 pix/deg 0.9385 0.9361 0.9411 0.9381 0.9409 0.9398
20 pix/deg 0.9314 0.9260 0.9343 0.9303 0.9339 0.9291

VI-VMAF 10 pix/deg 0.9634 0.9553 0.9615 0.9529 0.9646 0.9581
15 pix/deg 0.9532 0.9444 0.9544 0.9470 0.9581 0.9497
20 pix/deg 0.9387 0.9288 0.9435 0.9363 0.9476 0.9401

VI-VA-PSNR 10 pix/deg 0.8977 0.8812 0.8760 0.8563 0.8876 0.8712
15 pix/deg 0.8977 0.8817 0.8760 0.8564 0.8876 0.8708
20 pix/deg 0.8977 0.8817 0.8760 0.8564 0.8876 0.8707

VI-VA-SSIM 10 pix/deg 0.8947 0.8848 0.8921 0.8832 0.9106 0.9007
15 pix/deg 0.8633 0.8510 0.8537 0.8426 0.8777 0.8663
20 pix/deg 0.8353 0.8214 0.8188 0.8136 0.8463 0.8323

VI-VA-MS-SSIM 10 pix/deg 0.9563 0.9505 0.9628 0.9581 0.9676 0.9635
15 pix/deg 0.9501 0.9438 0.9552 0.9506 0.9627 0.9573
20 pix/deg 0.9445 0.9371 0.9482 0.9424 0.9572 0.9517

VI-VA-VMAF 10 pix/deg 0.9661 0.9589 0.9738 0.9667 0.9773 0.9717
15 pix/deg 0.9580 0.9491 0.9678 0.9599 0.9723 0.9658
20 pix/deg 0.9444 0.9349 0.9553 0.9482 0.9623 0.9564
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Investigation of applying different visual attention 
estimation methods

The proposed quality framework can make use of different 
visual attention estimation methods, as the visual attention 
weights �i,k can be computed from any visual attention map 
generated by different algorithms. Here, we investigate the 
effect of three different visual attention methods on VI-VA-
METRIC performance, namely, Kent distribution method 
[22], uniform viewport method, and equator-bias method. 
The first of the three estimation methods is based on Kent 
distribution, which is a Gaussian distribution defined on 
the surface of a unit sphere, as explained in [22]. With this 
method, we compute the visual attention maps using the 
viewport trajectories gathered in our subjective experiments 
and the default parameters proposed in [22]. For the second 

method, we also use viewport trajectories. In this method, 
each point of the viewport trajectories is replaced with a 
uniform viewport that is projected to ERP. The final visual 
attention map is obtained as the summation of the projected 
viewports. The last method does not require the viewport 
trajectories. Instead, it computes the visual attention map 
as a vertical bias from the equator defined by the Gaussian 
curve centered on the equator. Figure 7 shows the visual 
attention maps obtained with these three methods based on 
five discrete viewport positions.

Table 5 shows the performance of the Voronoi-based met-
rics integrated with visual attention. As can be noticed, both 
the Kent distribution method [22] and the uniform viewport 
method are able to improve the performance of the Voronoi-
based metrics. On the other hand, the equator-bias method is 
capable to improve VI-PSNR and VI-SSIM, while the perfor-
mance values of VI-MS-SSIM and VI-VMAF remain almost 
constant. In conclusion, these results show that adding a char-
acterization of the actual parts of the ODV that are likely 
watched improves the performance of the Voronoi-based 
metrics. As can be seen from the table, the metrics of the pro-
posed framework achieve the best performance when apply-
ing the Kent distribution method. Since this method is the 
most plausible and similar to the human eye-tracking results 
[21], it is expected to perform better than the other methods. 
Therefore, we use the visual attention maps estimated by the 
Kent distribution method in the rest of this paper.

Fig. 7  Visual attention maps computed with different methods using as input five different viewport positions

Table 5  Performance evaluation of the Voronoi-based metrics inte-
grated with visual attention estimated with three methods. The best 
performance values are in bold

Metrics Vis. Att. PLCC SROCC RMSE MAE

VI-PSNR – 0.8676 0.8551 7.5743 5.8377
VI-VA-PSNR Equator-bias 0.8781 0.8628 7.2995 5.5508
VI-VA-PSNR Uniform 0.8774 0.8585 7.4141 5.7168
VI-VA-PSNR Kent 0.8876 0.8712 7.1818 5.5072
VI-SSIM – 0.8823 0.8763 7.1172 5.2867
VI-VA-SSIM Equator-bias 0.8879 0.8850 6.9454 5.1687
VI-VA-SSIM Uniform 0.8981 0.8929 6.8103 5.0647
VI-VA-SSIM Kent 0.9106 0.9007 6.4345 4.8097
VI-MS-SSIM – 0.9486 0.9450 4.8743 3.8475
VI-VA-MS-SSIM Equator-bias 0.9486 0.9450 4.8790 3.8343
VI-VA-MS-SSIM Uniform 0.9634 0.9583 4.1350 3.3506
VI-VA-MS-SSIM Kent 0.9676 0.9635 3.8982 3.1526
VI-VMAF – 0.9646 0.9581 4.2096 3.1548
VI-VA-VMAF Equator-bias 0.9650 0.9576 4.1959 3.1393
VI-VA-VMAF Uniform 0.9749 0.9671 3.5602 2.7569
VI-VA-VMAF Kent 0.9773 0.9717 3.3753 2.5948

Table 6  Comparison of different temporal pooling methods for the 
combination of the frame scores applied in VI-VA-VMAF

Pooling PLCC SROCC RMSE MAE

Mean 0.9773 0.9717 3.3753 2.5948
Harmonic Mean 0.9775 0.9718 3.3681 2.5911
Min 0.9753 0.9705 3.4920 2.6887
Median 0.9761 0.9715 3.4093 2.6275
5th Percentile 0.9759 0.9708 3.4489 2.6437
10th Percentile 0.9776 0.9711 3.3636 2.5776
20th Percentile 0.9764 0.9714 3.3866 2.6041



Quality and User Experience             (2020) 5:4  

1 3

Page 13 of 17     4 

Investigation of different temporal pooling methods 
of the frame scores

Since the selection of the temporal pooling method P for the 
combination of the frame scores Ti (see Eq. 9) might affect 
the overall performance, in this paper, we also investigate its 
effect. For this purpose, motivated by the pooling methods 
which are used in VMAF code [58], we evaluate the follow-
ing ones: mean, harmonic mean, min, median, 5th percen-
tile, 10th percentile, and 20th percentile. Table 6 shows the 
performance of VI-VA-VMAF with these pooling methods. 
As can be noticed, the performance is not influenced too 
much by the choice of the pooling method. Therefore, in the 
rest of the paper, we consider only the mean pooling method.

Comparison with existing metrics

This section evaluates the performance of the Voronoi-based 
metrics and existing well-known metrics used in ODV qual-
ity assessment studies. Four of the existing metrics that we 
evaluate were developed for traditional 2D image/video 
quality assessment: PSNR, SSIM [43], MS-SSIM [44], and 
VMAF [39]. These metrics were applied to ODVs in two 
different formats, namely, ERP and CMP, and to distinguish 
them we use a subscript, e.g. PSNR ERP and PSNR CMP . 

Moreover, we analyze extra four metrics which were spe-
cifically designed for ODV: S-PSNR-I [10], S-PSNR-NN 
[10], WS-PSNR [8], and CPP-PSNR [9]. The implementa-
tion used in our evaluation for PSNR, SSIM, and MS-SSIM 
is the one provided by the Video Quality Measurement Tool 
[59]; for VMAF we used the code provided by its develop-
ers [58]; while for S-PSNR-I, S-PSNR-NN, WS-PSNR, and 
CPP-PSNR, we used the 360Lib standard software [60].

Table 7 shows the performance evaluation of the selected 
existing metrics and our Voronoi-based metrics. By looking 
at the results, we can notice a slightly higher correlation 
between the subjective and metric scores when the metrics 
PSNR, SSIM, and VMAF are applied to the CMP format 
instead of the ERP format. The reason of this could be the 
lower projection distortions of CMP compared to ERP. We 
also observe that the performance of the PSNR-based met-
rics developed for ODV is better than the performance of 
the traditional PSNR. Furthermore, among all the evalu-
ated metrics in Table 7, SSIM is characterized by the worst 
performance, even worse than PSNR. The reason might be 
that the inevitable projection distortions negatively affect 
the performance of SSIM, as some regions are stretched to 
much bigger areas (especially the top and bottom parts of 
ERP). Therefore, SSIM scores could be dominated by these 
regions, and this could cause SSIM to have lower correlation 
with subjective scores than PSNR, even though, for tradi-
tional 2D video, SSIM is much closer to human perception 
than PSNR. On the other hand, among the selected existing 
metrics that are not Voronoi-based, MS-SSIM and VMAF 
have the best performance. This is not unexpected, since 
these metrics, which have state-of-the-art performance for 
traditional 2D video [42], consider scaling and compression 
distortions that characterize our dataset. Between these two 
metrics, MS-SSIM is slightly better than VMAF for both 
projection formats. The reason can be explained with the fact 
that VMAF was neither modeled for 8K nor ODV.

The results also show that when the metrics are applied 
to planar Voronoi patches instead of the ERP and CMP for-
mats, they achieve a better performance. This is expected 
because of the lower projection distortions of the planar 
Voronoi patches compared to ERP and CMP, and because 
of the similar angular resolutions of the patches and the 
HMD viewport. Moreover, as already noticed before, the 
Voronoi-based metrics integrated with visual attention (i.e., 
VI-VA-METRICs) achieve better performance than the 
corresponding ones without visual attention (i.e., VI-MET-
RICs). The best performing metric among all compared is 
VI-VA-VMAF followed by VI-VA-MS-SSIM.

In addition to the numerical results, a statistical significance 
analysis of the difference between PLCC, SROCC, and RMSE 
of the quality metrics was conducted according ITU-T Rec-
ommendation P.1401 [61]. Figure 8 illustrates the statistical 
significance analysis of the evaluated metrics in Table 7. The 

Table 7  Performance evaluation of the selected existing metrics and 
our Voronoi-based metrics together with two projection formats, 
namely ERP and CMP. The best performance values are in bold

Metrics PLCC SROCC RMSE MAE

PSNR
ERP

0.8408 0.8237 8.2326 6.3169
PSNR

CMP
0.8480 0.8323 8.0419 6.2085

S-PSNR-I 0.8580 0.8438 7.8207 5.9715
S-PSNR-NN 0.8584 0.8433 7.8066 5.9648
WS-PSNR 0.8582 0.8430 7.8107 5.9772
CPP-PSNR 0.8579 0.8439 7.8200 5.9779
SSIM

ERP
0.7659 0.7551 9.7734 7.7396

SSIM
CMP

0.7701 0.7546 9.6583 7.6036
MS-SSIM

ERP
0.9224 0.9160 5.8232 4.4205

MS-SSIM
CMP

0.9132 0.9081 6.1422 4.7378
VMAF

ERP
0.8978 0.8864 6.7433 5.3631

VMAF
CMP

0.9063 0.8945 6.5630 5.2229
VI-PSNR 0.8676 0.8551 7.5743 5.8377
VI-SSIM 0.8823 0.8763 7.1172 5.2867
VI-MS-SSIM 0.9486 0.9450 4.8743 3.8475
VI-VMAF 0.9646 0.9581 4.2096 3.1548
VI-VA-PSNR 0.8876 0.8712 7.1818 5.5072
VI-VA-SSIM 0.9106 0.9007 6.4345 4.8097
VI-VA-MS-SSIM 0.9676 0.9635 3.8982 3.1526
VI-VA-VMAF 0.9773 0.9717 3.3753 2.5948



 Quality and User Experience             (2020) 5:4 

1 3

    4  Page 14 of 17

vertical bars show that there is no statistically significant differ-
ence between the metrics aligned with the same bar. As can be 
noticed in Fig. 8, the first four best quality metrics are statisti-
cally equivalent. The significance analysis results also show 
that the addition of visual attention might not always yield a 

statistically significant difference. Nevertheless, the numerical 
results show that integrating visual attention improved the met-
ric performance in all the cases, as we can also see in Table 4.

To further evaluate the Voronoi-based metrics in a dif-
ferent condition and analyze the effect of different spatial 

Fig. 8  Statistical significance 
analysis of the difference 
between PLCC, SROCC, and 
RMSE of the quality metrics, 
obtained according to ITU-T 
Recommendation P.1401 [61]. 
There is statistically significant 
equivalence between two qual-
ity metrics, only if there is a 
vertical bar aligned with them; 
e.g., there is a statistically sig-
nificant difference between VI-
VA-VMAF and MS-SSIM

ERP
 

in terms of PCC, SROCC, and 
RMSE

PLCC

VI-VA-VMAF
VI-VA-MS-SSIM
VI-VMAF
VI-MS-SSIM
MS-SSIMERP

MS-SSIMCMP

VI-VA-SSIM
VMAFCMP

VMAFERP

VI-VA-PSNR
VI-SSIM
VI-PSNR
S-PSNR-NN
WS-PSNR
S-PSNR-I
CPP-PSNR
PSNRCMP

PSNRERP

SSIMCMP

SSIMERP

SROCC

VI-VA-VMAF
VI-VA-MS-SSIM
VI-VMAF
VI-MS-SSIM
MS-SSIMERP

MS-SSIMCMP

VI-VA-SSIM
VMAFCMP

VMAFERP

VI-SSIM
VI-VA-PSNR
VI-PSNR
CPP-PSNR
S-PSNR-I
S-PSNR-NN
WS-PSNR
PSNRCMP

PSNRERP

SSIMERP

SSIMCMP

RMSE

VI-VA-VMAF
VI-VA-MS-SSIM
VI-VMAF
VI-MS-SSIM
MS-SSIMERP

MS-SSIMCMP

VI-VA-SSIM
VMAFCMP

VMAFERP

VI-SSIM
VI-VA-PSNR
VI-PSNR
S-PSNR-NN
WS-PSNR
CPP-PSNR
S-PSNR-I
PSNRCMP

PSNRERP

SSIMCMP

SSIMERP

Table 8  PLCC and SROCC of 
the evaluated metrics computed 
separately for the resolutions 
2K, 4K, and 8K. The best 
performance values for each 
resolution are in bold

2K 4K 8K

Metrics PLCC SROCC PLCC SROCC PLCC SROCC

PSNR
ERP

0.7388 0.6139 0.8360 0.8343 0.9202 0.9183
PSNR

CMP
0.7517 0.6203 0.8431 0.8450 0.9221 0.9163

S-PSNR-I 0.7634 0.6469 0.8568 0.8615 0.9304 0.9228
S-PSNR-NN 0.7649 0.6433 0.8570 0.8574 0.9300 0.9227
WS-PSNR 0.7650 0.6366 0.8570 0.8574 0.9299 0.9230
CPP-PSNR 0.7638 0.6432 0.8567 0.8615 0.9302 0.9230
SSIM

ERP
0.6996 0.5570 0.7703 0.7951 0.8600 0.8482

SSIM
CMP

0.7011 0.5591 0.7714 0.7878 0.8565 0.8484
MS-SSIM

ERP
0.8841 0.7992 0.9150 0.9351 0.9652 0.9478

MS-SSIM
CMP

0.8673 0.7824 0.9071 0.9276 0.9583 0.9446
VMAF

ERP
0.9202 0.8735 0.9203 0.9071 0.9515 0.9240

VMAF
CMP

0.9226 0.8790 0.9309 0.9156 0.9567 0.9285
VI-PSNR 0.7640 0.6321 0.8660 0.8769 0.9358 0.9247
VI-SSIM 0.8346 0.7109 0.8794 0.9060 0.9367 0.9249
VI-MS-SSIM 0.8642 0.8807 0.8140 0.9437 0.9767 0.9557
VI-VMAF 0.9627 0.9287 0.9577 0.9458 0.9789 0.9500
VI-VA-PSNR 0.7960 0.6644 0.9050 0.9006 0.9451 0.9321
VI-VA-SSIM 0.8434 0.7326 0.9200 0.9321 0.9593 0.9392
VI-VA-MS-SSIM 0.9529 0.9105 0.8332 0.9674 0.9829 0.9634
VI-VA-VMAF 0.9762 0.9493 0.9737 0.9625 0.9862 0.9593
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resolutions of the ODVs, we calculate the correlation coef-
ficients separately for each spatial resolution of our data-
set (i.e., 2K, 4K, and 8K). The results of this analysis are 
shown in Table 8. It is interesting to notice that for most of 
the selected existing and Voronoi-based metrics the corre-
lations PLCC and SROCC improve when the resolution is 
increased. This can be attributed to scaling distortions (blur) 
present at 2K and 4K resolutions. Assuming that most of 
the metrics were developed mainly for compression distor-
tions and/or noise, the presence of scaling distortions could 
decrease the correlation between DMOS and metric scores 
in the cases of 2K and 4K. Nevertheless, we notice again that 
the integration of visual attention increases the performance 
of the Voronoi-based metrics.

Regardless of the case, the integration of visual attention 
(i.e., VI-VA-METRICs) improves the Voronoi-based metrics 
(i.e., VI-METRICs) in every situation. These improvements 
can be seen not only in Table 7 but also in Tables 5 and 8 . 
This consistent improvement shows that the proposed inte-
gration of visual attention is an important factor to consider 
in the objective ODV quality assessment, and it needs to be 
taken into account to increase the metric performance.

Limitations of the proposed framework and future 
improvements

As discussed in the previous subsection, the proposed frame-
work integrated with visual attention achieves state-of-the-
art performance. Nevertheless, it has also limitations that we 
plan to tackle in future work.

First, the current framework only considers visual atten-
tion maps generated using the viewport trajectories collected 
from the participants of a subjective experiment. In practice, 
this type of data is not available, as it is not possible to find 
the viewport trajectories for new content without conduct-
ing a subjective experiment first. Instead, automatic sali-
ency estimation algorithms [62] might be used for most of 
the practical cases. Nevertheless, the integration of the said 
automatic saliency estimation methods and the performance 
analysis in this case remain as future work.

Second, in our study and in particular in our dataset, 
we have considered only the typical artifacts introduced 
by the encoding pipeline of the adaptive streaming sys-
tems, i.e., compression and scaling distortions. However, 
the end-to-end ODV distribution pipeline can introduce 
other visual artifacts [63, 64], such as artifacts introduced 
during capturing (e.g., noise and motion blur), stitching 
artifacts (e.g., visible seams and missing information), 
blending artifacts (e.g., ghosting and exposure difference), 
and warping artifacts. The perceptual impact of the other 
visual artifacts can be investigated and integrated into our 
proposed framework.

Third, with the current unoptimized code, the computa-
tion of VI-VA-VMAF requires considerable computational 
resources. For an 8K ODV with 300 frames, the computa-
tion of VI-VA-VMAF with 20 patches and with 10 pix/deg 
patch resolution takes about three minutes using a PC with 
a 4GHz Intel Core i7-6700K processor. Moreover, VI-VA-
VMAF requires as input also a visual attention map for each 
frame. On a machine with two Intel Xeon Gold 6134 proces-
sors, the parallel computation of 400 × 800 visual attention 
maps using the code of the Kent method provided in [22] 
takes about nine seconds per map.

Conclusion

This paper presented a framework for objective ODV quality 
assessment that takes into account the spherical nature of 
ODV and the ODV viewing characteristics. The proposed 
framework is based on the subdivision of ODV into planar 
Voronoi patches with low projection distortions obtained 
with the spherical Voronoi diagram. Furthermore, it also 
exploits visual attention to identify the regions that are con-
sumed by the viewer with high probability, which have a big 
influence on the perception of the video quality. For the eval-
uation of the framework, our previously established ODV 
dataset was extended in this study, creating a dataset with 
a total of 120 distorted videos from 8 undistorted reference 
videos. Subjective scores and viewport trajectories for the 
new ODVs were also collected in a subjective experiment.

In the evaluation of the framework, first the framework 
parameter space was analyzed. This analysis showed how 
planar Voronoi patches and visual attention are important 
to achieve high correlation between subjective and metric 
scores. Moreover, the framework was also compared with 
exiting metrics, and this showed that our framework can 
achieve state-of-the-art performance.

As future work, we plan to further explore the visual 
attention methods for ODV that do not require viewport tra-
jectories. We also intend to extend our framework to distor-
tions different from the ones considered here, i.e., compres-
sion and scaling distortions.
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