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ABSTRACT
In this paper, we present a novel approach to efficiently transmit light
fields in the Fourier Disparity Layer (FDL) representation using a
binary hierarchical scheme. The FDL model consists of a set of ad-
ditive layers which can be simply shifted and summed to render a
view of the light field at any angular coordinate. In order to trans-
mit the FDL model, we propose a method for building a binary tree
where the root consists of a single compound layer obtained as the
sum of all the original layers. Subsequent levels of the tree are ob-
tained by splitting a parent layer into two children layers whose sum
is equal to the parent layer. Hence, the FDL model is recursively re-
fined with additional layers at each new level, resulting in a scalable
representation. An efficient scheme is proposed to encode a single
image in order to split a parent layer into its two children. Thanks
to this approach, the total number of images to decode for receiving
the complete tree is equal to the number of layers in the original FDL
model, which is typically smaller than the number of views required
in the traditional light field representation.

Index Terms— Light Fields, Streaming, Compression, Fourier
Disparity Layers

1. INTRODUCTION

The emergence of light field capturing and rendering technologies
allow advanced user interactions with natural image content, paving
the way for new virtual reality applications. While traditional images
only contain a projection of the scene in two spatial dimensions, a
light field additionally includes two angular dimensions representing
all the possible viewpoints along a 2D plane. This 4D image rep-
resentation enables photo-realistic rendering of a scene at varying
viewpoints with additional control over aesthetic parameters such as
camera aperture and focus. However, for streaming applications, the
storage and transmission of such content is very challenging due to
the large amount of information in 4D light fields that contain many
views of the same scene.

Light field compression is a very active research topic as evi-
denced by the standardization initiative in JPEG-Pleno [1] as well
as the numerous and diverse methods that have been proposed re-
cently. These methods are generally classified into two main cate-
gories. The first category specifically targets the light fields captured
with lenslet based plenoptic cameras and encodes the lenslet image
directly formed on the sensor. Most of these methods extend the
standard HEVC intra predictions with additional prediction modes
that exploit the structure and redundancies within the lenslet im-
age [2–8]. The second category of methods encode the light field in
the more generic 4D representation. In practice, this means that the
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data to transmit is a 2D array of 2D images, where each image corre-
sponds to a viewpoint of the scene. Motion compensation prediction
schemes of video coding standards have been directly used in [9–11]
where the views are encoded as a pseudo video sequence, or in [12]
that adapts the multiview extension of HEVC to a 2D array of views.
Other approaches leverage view synthesis techniques to predict en-
tire views using, for example, disparity compensation [13–15], or
Fourier domain priors [16, 17]. Transform coding schemes adapted
to light fields have also been designed in [18] and [19]. While [18]
uses the 4D DCT transform, the authors of [19] propose a motion-
compensated wavelet decomposition.

However, the number of views to be transmitted may be very
large, particularly for dense light fields which are suitable to simu-
late camera refocusing. This reduces the applicability of these ap-
proaches in the context of streaming where both compression rates
and decoding complexity are essential. Alternatively, more compact
representations have been explored such as a low rank approxima-
tion of the 4D light field in [20, 21], a steered mixture of experts
model in [22], or local graph transforms in [23]. However, the re-
spective coding schemes still require the full reconstruction of the
4D light field in order to perform renderings such as refocusing.

For more efficiency, we propose in this paper to transmit light
fields in the Fourier Disparity Layer (FDL) representation [24]
which can model arbitrarily dense light fields with only a few layers.
Unlike other compact representations, the FDL model is directly
suitable for real-time rendering of either all-in-focus views or re-
focused images with advanced control over the synthetic camera
aperture. Each layer is associated to a single disparity value and
mostly contains the texture information at the corresponding depth.
However, remaining correlations between layers are not straightfor-
ward to exploit with traditional video compression tools. Therefore,
instead of encoding the layers as a sequence, we propose a hier-
archical scheme based on an FDL binary tree. The sum of all the
layers, which corresponds to the rendered central view, is trans-
mitted first as the root compound layer. Then, we encode another
image containing the information required to split the root layer in
two layers of lower energy. By recursively splitting the compound
layers, we finally obtain the original FDL model. At each level of
recursion, the obtained layers can be used for light field rendering,
hence allowing a scalable representation where the current result
is progressively refined by decoding further levels of the tree. The
correlations between a given compound layer and the splitting image
are similar to a local tone mapping relationship. This directs our
choice of encoder towards the method in [25] initially proposed to
compress high dynamic range images from their tone mapped, low
dynamic range versions.

By evaluating the quality of both the rendered views and the re-
focused images, we obtain large rate-distortion gains in comparisons
to traditional view encoding schemes, including the JPEG-Pleno ref-
erence encoders.



2. FOURIER DISPARITY LAYER BINARY TREE

2.1. Fourier Disparity Layer Model

First, let us present the Fourier Disparity Layer model. In the FDL
model, each layer Lk of index k is associated to a disparity value
dk such that any view Iu,v of angular coordinates pu, vq can be ren-
dered simply by shifting each layer Lk by a vector pdku, dkvq and
by summing all the shifted layers. This is expressed in [24] by the
following equation in the Fourier domain:

Îu,v “
n
ÿ

k“1

e2iπdkpuωx`vωyqL̂kpωx, ωyq, (1)

where Îu,v and L̂k are the Fourier transforms of the view Iu,v and
the layer Lk respectively, n is the number of layers, and ωx, ωy are
the spatial horizontal and vertical frequencies respectively. Thanks
to this linear relationship, the inverse problem that consists in con-
structing the FDL model from a set of input views is solved in the
Fourier domain for each spatial frequency as a linear least squares
problem. Based on the same equation, a calibration of the dispari-
ties dk and the angular coordinates pu, vq of each input view is also
presented in [24].

2.2. Binary Tree Construction

For efficient and scalable transmission of the model, we derive an
FDL binary tree representation in which each new level of the tree
increases the number of layers, and thus the accuracy of the FDL
model.

Let us note LlÑr “
řr
k“l Lk, the compound layer from a left

index l to a right index r. The root of the tree is the sum of all the
layers, noted L1Ñn (see Fig. 1(a)). Note that from Eq. (1), this cor-
responds to the central view of coordinates pu, vq “ p0, 0q. Starting
from the root node, the tree is built by recursively splitting parent
nodes into two children nodes. Given the compound layer LlÑr of
a parent node (with l ă r), and a split index s P vl, r ´ 1w, the two
children are defined as LlÑs and Ls`1Ñr (see Fig. 1(b,c)). In our
implementation, the split index is set as s “ tpl ` rq{2u so that the
scene information in the disparity range rdl, drs is distributed evenly
between the two children. This node splitting operation can be per-
formed until we reach an original layer Lkpk P v1, nwq. Therefore,
the original FDL model is contained in the leaf nodes.

At every node of the tree, the corresponding layer LlÑr is as-
sociated with a disparity value dlÑr “

řr
k“l dk. Therefore, even

when only the low levels of the tree are known, an approximation of
the light field may be reconstructed from the compound layers and
their associated disparity values using Eq.(1).

2.3. Split Images

In this tree representation, the number of nodes, and thus the total
number of images is equal to 2n´ 1. However, by definition, every
parent layer LlÑr , is equal to the sum of its two children layers
LlÑs and Ls`1Ñr . Therefore, the two children layers do not need
to be directly encoded. Instead, we define a single split image LslÑr
that only contains the information of the difference between the two
layers:

LslÑr “
LlÑs ´ α ¨ Ls`1Ñr

α` 1
, (2)

where α is a positive scalar value. In practice, there exist redun-
dancies between the two children layers. Hence, computing their
difference in Eq. (2) reduces the redundancies and the split image

(a) root layer (b) first child (c) second child (d) split image
Fig. 1. Compound layers and split image: (a) root layer L1Ñ20, (b)
first child L1Ñ10, (c) second child L11Ñ20 (d) split image L10

1Ñ20

formed from the two children layers. The split image is shown with
an offset added to its values to display the negative values.

Fig. 2. Example of FDL tree with n=4. Only the n images circled in
red and the n disparity values circled in green need to be transmitted
to reconstruct the complete tree.

can be compressed more efficiently. The scaling parameter α com-
pensates for the fact that both children layers may have significantly
different energy when the number of original layers summed to form
LlÑs and Ls`1Ñr are different. In our implementation we fix α as
the ratio between the numbers of original layers summed in LlÑs
and in Ls`1Ñr . It is expressed as α “ s´l`1

r´s
. Therefore, α does

not need to be transmitted.
Finally, given Eq. (2) and knowing thatLlÑr “ LlÑs ` Ls`1Ñr ,

the two children layers are reconstructed as:

LlÑs “
α

α` 1
LlÑr ` L

s
lÑr (3)

Ls`1Ñr “
1

α` 1
LlÑr ´ L

s
lÑr (4)

Fig. 2 illustrates an example of FDL tree with the notations in-
troduced in this section.

3. COMPRESSION OF THE TREE

In order to transmit the complete tree presented in Section 2, we must
compress the root layer as well as the n ´ 1 split images required
to reconstruct further levels of the tree. After conversion from RGB
colorspace to YUV 4:4:4 format with 10 bit encoding, the root layer
L1Ñn is compressed using the HEVC standard in intra mode. The
split images are also encoded in 10 bit YUV 4:4:4 format. However,
since these images typically contain positive and negative values, we
normalize the image data to the range r0, 1s before the 10 bit encod-
ing. The n disparity values are also transmitted as 32-bit floating
point values. We present the normalization process in Section 3.1
and the encoding scheme used for the split images in Section 3.2.

3.1. Image Normalization and Quantization Adjustment

For an image I , its normalized version is Ĩ “ pI ´mq{M , where
the normalization parameters m and M must be transmitted so that
the decoder can perform the inverse operation. The offset m is the
minimum value of I and is encoded on 11 bits (10 bit precision



Fig. 3. Rate distortion results with PSNR YUV evaluated on the views obtained with FDL pre-processing. The Bjontegaard rate gains of our
FDL Tree method with respect to WASP, MuLE and HEVC are indicated in red next to the corresponding legend items.

and 1 sign bit). Ideally, the parameter M should be computed as
M “ maxpIq ´m so that Ĩ covers the full range r0, 1s.

However, while this rescaling increases the internal precision
within the HEVC encoder, it also affects the quantization and thus
the bitrate allocation between the different images to compress.
Therefore, we adjust the encoder quantization parameter (QP) to
compensate for the scaling of 1{M . The HEVC QP parameter is
an integer defined such that an increase of 6 multiplies the internal
quantization step by 2. Therefore, we define a QP offset as:

QPoff “

Z

6 ¨ log2

ˆ

1

maxpIq ´m

˙^

(5)

where log2 is the base 2 logarithm. Now, the normalization can be
performed usingM “ e´QPoff ¨lnp2q{6 « maxpIq´m. Adding the
value QPoff to the HEVC QP parameter perfectly compensates for
the normalisation factor 1{M .

3.2. Encoder for the Split Images

For an efficient compression of the split images, we observe that
redundancies exist between a given parent layer LlÑr and its corre-
sponding split image LslÑr (see Fig. 1(a) and (d)). While the texture
content of LlÑr also appears in LslÑr , the dynamic of the images
are very different, and the relationship between the two images is
comparable to a local tone mapping. However, there is no motion
between the images, which makes it possible to use an encoder de-
signed for encoding an image from a given tone mapped version.
Various high dynamic range image compression methods have been
proposed in the literature to exploit such correlations. In our case,
the tone mapping relationship is local and highly non-linear, which
excludes methods such as [26–28] that model the tone mapping as
a global tone curve. In [29] and [25], on the other hand, no such
assumption is made since they perform inverse tone mapping on a
per-block basis. In particular, we choose the HEVC based encoder

in [25] that has shown higher performances for the most challeng-
ing tone mapping operators. It implements a new prediction mode
within the HEVC Test Model encoder (HM) that first predicts a non-
linear tone curve of a current block based on its neighborhood con-
taining previously reconstructed data for both the original and the
tone mapped versions.

4. EXPERIMENTAL RESULTS

For our experiments, we construct FDL models with n “ 20 layers
from 6 light fields of the JPEG-Pleno dataset [30]. We use the 4
Light Fields ‘Bikes’, ‘Danger de Mort’, ‘Fountain Vincent 2’, and
‘Stone Pillars Outside’ captured with a Lytro Illum camera and the 2
synthetic light fields ‘Greek’ and ‘Sideboard’. In order to determine
accurate angular coordinates of the input light field views and an
optimal set of disparity values dk for constructing the layers, we use
the FDL calibration in [24].

We compare in Sections 4.1 and 4.2 the compression perfor-
mance of our method with the following encoding schemes:

• JPEG-Pleno VM 2.1 using the WASP mode (encoder based
on disparity compensation).

• JPEG-Pleno VM 2.1 using the MuLe mode (encoder based
on 4D-DCT transform).

• HEVC encoding of a pseudo-sequence of views following the
scanning order in [31]. We use the HEVC Test model encoder
(HM) with 10 bit YUV 4:4:4 encoding and using random ac-
cess configuration).

Finally, we show in Section 4.3 that our coding scheme can be
further optimised, particularly for low bitrate transmission, in the
context of adaptive streaming.

4.1. Evaluation of Rendered Views
When constructing the FDL model from an array of light field views,
the corresponding views rendered with Eq. (1) may differ from the



Fig. 4. Rate distortion results on the light field ‘Bikes’ with PSNR
YUV evaluated on the refocused images from the original light field
(without FDL pre-processing).

original ones. In particular, for noisy light fields such as the ones
captured by the Lytro camera, this FDL processing naturally filters
the noise and corrects possible brightness and color inconsistencies
between views. Hence, for fair comparisons with our FDL coding
scheme, the other methods are applied to the FDL pre-processed
array of views (i.e. rendered with the uncompressed FDL model).
These pre-processed views are used as the reference for quality eval-
uation. Comparative rate distortion results are provided in Fig. 3,
where the PSNR YUV metric and the bitrate (in bits per pixel) are
defined according to the JPEG-Pleno common test conditions [31].

For all the tested light fields large improvements in compression
performance are observed in comparison with the other approaches.
The Bjontegaard bitrate savings with respect to WASP, MuLE and
HEVC are shown in red in Fig. 3, and the Bjontegaard rate and PSNR
gains averaged over the tested light fields are reported in Table 1.

WASP MuLE HEVC
BD PSNR 2.27 dB 1.58 dB 2.27 dB
BD Rate -43.8% -36.0% -45.5%

Table 1. Average Bjontegaard rate and PSNR gains of our method
with respect to the compared methods.

4.2. Evaluation of Refocused Images

Here, we evaluate the results on the refocused images rendered from
the light field, and we assess the impact of the FDL pre-processing
of the views on the other compression methods. The ground truth
for the PSNR YUV evaluation is a set of 20 refocused images each
corresponding to one of the disparity values obtained in the FDL
calibration (i.e. the 20 values cover all the disparity range in the
light field). Note that, the ground truth images are computed from
the original light field without pre-processing. For all the methods,
the refocusing is performed using the traditional shift-and-sum algo-
rithm from the reconstructed views. Note that for our method, faster
computations could be obtained by directly applying the FDL real-
time rendering in [24] without reconstructing the views first. How-
ever, this may result in slightly different images and introduce a bias
in the quality evaluation because it simulates a continuous aperture
rather than a discrete shift-and-sum of sub-aperture images.

The results in Fig. 4 show that our FDL Tree method outper-
forms the WASP, MuLE and HEVC encoding of the views, either
with or without the pre-processing. Furthermore, the latter meth-
ods are significantly improved by the FDL pre-processing. This is
explained by the fact that the reduced noise and color inconsisten-

Fig. 5. Results of our method where the encoded FDL is optimised
for different numbers of layers (i.e. variable depth of the encoded
tree). The ground truth is the light field pre-processed with an FDL
of 20 layers. The convex hull shows the overall performance.

cies in the views reduce the bitrate without degrading the refocused
images since the refocusing has similar filtering properties.

4.3. Adaptive Streaming with Variable Tree Depth
Our method is naturally scalable since only a portion of the encoded
tree may be decoded to obtain a coarse FDL model with ν layers
(ν ă n). As described in Section 2.2, this coarse model is obtained
by summing layers of the original FDL model initially computed
with n layers. However, given a number of layers ν, this procedure
may not provide the optimal FDL model for light field reconstruc-
tion. In order to compute such an optimal model, the FDL construc-
tion in [24] must be applied directly with ν layers.

This can be exploited in the context of adaptive streaming, where
several encodings of the content are performed at various bitrates in
order to transmit the version that best suits the network bandwidth.
In this scenario, several FDL trees with different depths can be en-
coded, and the lower depth trees can be optimally computed for the
corresponding number of layers. We show in Fig. 5 that for low bi-
trates, the optimised low depth FDL trees allow a higher quality view
reconstruction. This improves the overall compression performance
for adaptive streaming characterized by the convex hull in Fig. 5.

5. CONCLUSION

We have presented a novel approach to efficiently transmit a light
field represented as a Fourier Disparity Layer model rather than a
conventional array of views. In the FDL model, the texture infor-
mation of the 3D scene is distributed over several layers, each corre-
sponding to a depth plane. In order to transmit the layers in a scalable
fashion and to exploit their redundancies, we have proposed a binary
hierarchical scheme that first encodes a compound layer equal to the
sum of all the layers. The original FDL model is recovered by re-
cursively splitting compound layers into two children layers. The
information required for this operation is contained in a split image
that is transmitted using a state-of-the-art high dynamic range image
encoder exploiting the tone mapping like relationship between the
split image and the parent compound layer. The proposed scheme
was shown to outperform both modes of the latest JPEG-Pleno Ver-
ification Model (VM 2.1) as well as the HEVC compression of a
pseudo-sequence of views when encoding the FDL pre-processed
light field. This pre-processing also improves the compared method
when evaluating the refocused images. Finally, further optimisation
of our scheme was also proposed for an adaptive streaming scenario.
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