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ABSTRACT

Light fields are able to capture light rays from a scene arriving at
different angles, effectively creating multiple perspective views of
the same scene. Thus, one of the flagship applications of light fields
is to estimate the captured scene geometry, which can notably be
achieved by establishing correspondences between the perspective
views, usually in the form of a disparity map. Such correspondence
estimation has been a long standing research topic in computer vi-
sion, with application to stereo vision or optical flow. Research in
this area has shown the importance of well designed descriptors to
enable fast and accurate matching. We propose in this paper a binary
descriptor exploiting the light field gradient over both the spatial and
the angular dimensions in order to improve inter view matching. We
demonstrate in a disparity estimation application that it can achieve
comparable accuracy compared to existing descriptors while being
faster to compute.

Index Terms— Light Fields, Binary Descriptor, Disparity Esti-
mation

1. INTRODUCTION

Light fields (LF) emerged as a new imaging modality able to capture
all light rays passing through a given amount of the 3D space [1].
Compared to traditional 2D imaging systems which only capture the
spatial intensity of light rays, the common two-plane parameterisa-
tion of LFs also contains the angular direction of the rays. An LF
can be represented as a 4D function: Ω × Π → R, (s, t, u, v) →
L(s, t, u, v) in which the plane Ω represents the spatial distribution
of light rays, indexed by (u, v), while Π corresponds to their angular
distribution, indexed by (s, t). A practical way to visualise an LF is
to consider it as a matrix of views, also called sub-aperture images
(SAI), where each image represents a 2D slice of the LF over the
spatial dimensions (u, v). Another common representation of LFs
are Epipolar Plane Images (EPI), which are 2D slices of the 4D LF
obtained by fixing one spatial and one angular dimension (su- or
vt-planes).

Applications of LFs notably include rendering novel images
viewpoints [1, 2], synthetic depth-of-field [3, 4], and estimating a
scene geometry. The latest has gained considerable attention in
the computer vision community, either by directly estimating a
depth map of the scene by estimating line slopes of the EPI [5–7],
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defocus cues [8, 9], or deep networks [10, 11]. Alternatively, dis-
parity map can be estimated through direct matching in-between
the LF views [12–16]. Such methods can be adapted from previous
computer vision work related to optical flow or stereo matching
tasks, which showed the importance of well designed descriptors to
perform fast and accurate matching [17–25].

In this paper, we propose a novel binary descriptor exploiting
the LF spatio-angular properties to improve inter view matching by
adapting the existing Binarised Octal Orientation Maps (BOOM) de-
scriptor [26] which was shown to improve both speed and accuracy
compared to other state-of-the-art descriptors. Note that the pro-
posed descriptor is in essence a 2D descriptor which takes advan-
tages of the 4D spatio-angular dimensions of the LF, contrary to the
full 4D descriptors such as LiFF [27], which goal is to provide a
robust feature detector and descriptor for applications such as struc-
ture for motion that establish correspondences between different LFs
of a same scene. In fact, several existing 4D detectors and descrip-
tors are built by computing 2D feature detectors and descriptors on
the LF views and then impose consistency over the 4D LF geom-
etry [28, 29]. The proposed descriptor could thus benefit such ap-
proaches.

Following the insight that most efficient descriptors are based
on gradient features, the original BOOM descriptor consists in a col-
lection of binarised gradient response maps computed on a 16× 16
patch. The input patch is divided in 4 × 4 pixel blocks for which
the gradient response is evaluated along 8 directions. A total of 32
pixel blocks arranged on a quincunx grid within the input patch are
used, resulting in a 8 × 16 = 256 bits descriptor. The descriptor
computation is advantageously fast, as well as the computation of
the distance between the descriptors. We propose to further exploit
this idea for LFs considering not only the 2D gradient response over
the spatial dimension but also the 2D angular dimensions. In our ap-
proach, the spatial gradient response over 8 directions is computed
on 16 pixel blocks arranged on a regular grid instead of 32. In ad-
dition, we evaluate the angular gradient response over 16 directions
on 8 pixel blocks. This results in a 256 bits descriptor concatenating
the 128 bits from the binarised spatial gradient response and the 128
bits from the angular one.

Similar to the application of BOOM to optical flow estima-
tion [26], the proposed descriptor is integrated in the coarse-to-fine
PatchMatch (CPM) [30] framework together with the edge-aware
Permeability Filter (PF) in order to produce dense disparity maps.
In addition to disparity estimation, the proposed descriptors could
also be useful to any application relying on inter view matching,
e.g. denoising or super-resolution filters [31, 32], camera array
calibration [33, 34], or colour correction [35, 36].

This paper is organised as follows. Section 2 describes in detail
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Fig. 1: Locations of the 16 spatial bins Bs and 8 angular bins Ba within the
input patch P. On the right are represented the 8 orientation vector used for
the computation of the spatial gradient response and the additional 8 vectors
used for the angular gradient response.

the proposed light field binary descriptor. We evaluate in section 3
the performance of our approach against existing descriptors, both
in terms of ROC and in terms of accuracy in a disparity estimation
application. Finally, the paper is concluded with directions for future
research in section 4.

2. A BINARY DESCRIPTOR FOR LIGHT FIELDS

In this section, we first describe the proposed Spatio-Angular Bi-
narised Orientation Maps (SABOM) descriptor which exploits the
light field gradient information over both the spatial and the angular
dimensions. This binary descriptor can be efficiently implemented,
and we then briefly explain how the proposed descriptor can be used
for fast disparity estimation by integration within the CPM frame-
work together with an edge-aware filter.

2.1. Spatio-Angular Binarised Orientation Maps

The proposed descriptor is computed on a normalised grayscale
16 × 16 input patch P, and its gradient g is obtained by applying
the Prewitt operators to both the spatial and angular dimensions.
Note that while the angular gradient is computed by applying the
Prewitt operators on angular patches, it is re-aligned to the orig-
inal spatial image pixel grid to compute the descriptor. For each
pixel location p in P, the gradient is thus a 4-dimensional vector
gp =

[
ghsp , gvsp , ghap , gvap

]
where indices h, v indicate the gradi-

ent horizontal or vertical orientation respectively, and s, a indicate
the spatial or angular dimension. We denote by gs

p and ga
p the 2-

dimensional gradient vectors for the spatial and angular dimensions
respectively.

The 256 bits descriptor is built from spatial gradient map re-
sponses computed along 8 orientations at 16 locations, which
amounts to 8 × 16 = 128 bits, as well as angular gradient map
responses computed along 16 orientations at 8 locations, which also
amounts to 128 bits.

More precisely, P is split into 4 × 4 pixel blocks (bins) denoted
B. For each bin location, the gradient response is evaluated as:

rdkl =
∑
p∈Bd

l

max(0, 〈ok,g
d
p〉) with d = s, a (1)

where rdkl is the gradient response, Bd
l is the lth 4× 4 bin, and ok is

the kth orientation vector.
As shown in Fig. 1, the 16 spatial bin locations Bs

l are arranged
on a regular square grid, similar to SIFT. The 8 orientation vectors
used for the spatial gradient responses are defined as:

[o0 . . .o7] =

[
1 1 0 −1 −1 −1 0 1
0 1 1 1 0 −1 −1 −1

]
(2)

Note that the original BOOM descriptor was using 16 additional
spatial bins arranged in quincunx to obtain a 256 bits descriptor. In
our approach, these additional spatial bins are replaced by 8 angular
bins1 Ba

l as shown in Fig. 1. We chose to reduce the support for
the angular gradient to 8 bins as angular gradient matching is more
effective for pixels close to the patch centre. In addition, a finer eval-
uation of the gradient orientation helps the accuracy of the matching.
Thus, in addition to the vectors defined in equation 2, we use the fol-
lowing 8 vectors to compute the angular gradient responses:

[o8 . . .o15] =

[
2 1 −1 −2 −2 −1 1 2
1 2 2 1 −1 −2 −2 −1

]
(3)

In order to minimise the computation time, an approximation of
the computationally intensiveL2 norm [37] is used for the descriptor
normalisation. Furthermore, the division operation is not explicitly
computed, but implicitly carried in the binarisation step described
below. The normalisation coefficients are obtain as:

sd =
∑
p∈P

α · ‖gd
p‖∞ + β · ‖gd

p‖1 with d = s, a (4)

Finally, the spatial gradient responses are binarised following:

bskl =

{
rskl · θs0 > ss, if k is even
rskl · θs1 > ss, if k is odd

(5)

and the angular gradient responses are binarised as:

bakl =


rakl · θa0 > sa, if k is even and k < 8

rakl · θa1 > sa, if k is odd and k < 8

rakl · θa2 > sa, if k ≥ 8

(6)

where the thresholding parameters θ are used to compensate the
missing normalisations, namely division by the orientation vector
L1 norm 〈ok,ok〉 in equation 1, and division by α + β in equation
4. It is clear that the L1 norm of the 8 orientation vectors from equa-
tion 2 is either 1 or 2 depending on the parity of the vector index,
while the norm of the vectors from equation 3 have a norm of 3.
Hence the need for two different thresholding parameters θs0 and θs1
for the spatial gradient response binarisation, and three parameters
in the angular case.

The parameters values were empirically found using the syn-
thetic datasets from the HCI benchmark [38] and INRIA [39] for
which ground truth disparity maps are available. We first determined
α and β by explicitly computing the L2 norm approximation error,
which was minimised by α = 6 and β = 2. We then use a pro-
cedure similar to the one described in the next section to obtain the
ROC performance in order to find the best thresholding parameters,
which yielded θs0 = 512, θs1 = 256, and θa0 = θa1 = θa2 = 512.

1angular refers here to the gradient, however the bin itself is still spatially
located within the input patch as shown in Fig. 1



As in [26], the θs,ai parameters are rounded to powers of two so that
the binarisation step can be implemented with bitshifts for efficiency.
Note that all operations involved in the descriptor computation can
be carried with integer arithmetic and do not require any division or
more complex functions, further increasing the computation speed.

2.2. Application to disparity map estimation

We integrate the proposed descriptor in a disparity estimation frame-
work similar to the original BOOM application to optical flow [26].
More precisely, the descriptor is first used in CPM, [30] which gen-
erates sparse matches between the LF views. A Gaussian pyramid
is created for all the LF views. Starting from the coarsest pyramid
level, matches are computed on a sparse regular grid, and estimates
are then propagated to the next level. At the finest level, a forward-
backward check is computed between all neighbouring views of the
LF on both horizontal and vertical directions. In addition, a check
threshold θdesc is applied to the matching costs to remove unreliable
matches. Note that for efficiency, the spatial and angular gradient
are pre-computed for each level of the Gaussian pyramid. Further-
more, an efficient dense scan implementation of the descriptor is
used which reuse gradient responses previously computed for neigh-
bouring descriptors.

A dense disparity maps is then obtained from the sparse CPM
matches by applying the permeabilty filter (PF) described in [26],
which is a computationally effective edge-aware filter. In this pa-
per, we only use the spatial PF, for which the forward-backward cost
map computed on the finest CPM pyramid level is used as a confi-
dence map. As shown in the next section, the cost check threshold
θdesc has a significant impact on the quality of the final dense dis-
parity map as it affects the density of PF input. An example of dense
disparity map obtained from applying the PF to sparse matches is
shown in Fig. 4.

Note that this application is used to compare existing descrip-
tors but would require further improvement to compete with the best
state-of-the-art method for disparity estimation, e.g. by using a vari-
ational energy minimisation step commonly applied at the end of
such pipeline.

3. RESULTS

We first evaluate in this section the ROC performance of the pro-
posed descriptor compared to the original BOOM as well as the
popular SIFT and DAISY descriptors. We then compare these de-
scriptors when used for disparity estimation using the approach de-
scribed in the previous section. More detailed results and code will
be available online2.

For both experiments, we used the synthetic dataset from the
HCI benchmark [38] and INRIA [39], as they are provided with
ground truth disparity maps. Our C++ implementation of BOOM
and SABOM is based on OpenCV, and for comparisons we used
the readily available OpenCV implementation of SIFT and DAISY.
We used CPU parallelisation over the LF views when possible with
OpenMP. All experiments were run on an Intel Core i7-6700 3.4GHz
CPU with 8 logical processors.

2v-sense.scss.tcd.ie/research/light-field-imaging/a-spatio-angular-binary-
descriptor-for-fast-light-field-inter-view-matching/

Fig. 2: ROC performance comparisons on the HCI benchmark and INRIA
Synthetic datasets. The INRIA dataset is more challenging has it contains a
wider range of disparity values.

3.1. ROC performance

For this experiment, we used the Dense subset of the INRIA dataset
containing 39 LFs with a disparity range of [−5.5, 5.3], and the Ad-
ditional subset of the HCI dataset containing 16 LFs with a disparity
range of [−3.6, 3.5] for which ground truth disparity maps of all
views are available.

We first describe here the procedure designed to evaluate the
ROC performance of a descriptor on LF data. The goal of the pro-
cedure is to create a high number of pairs of ground truth match-
ing patches and non-matching patches. First, LF views are split in
32 × 32 patches. For the HCI dataset, we allowed an overlap of 16
pixels between the 32×32 patches, creating over 400K ground truth
pairs for both matches and non-matches. For the INRIA dataset, no
overlap between patches was used, creating over 200K ground truth
pairs for both matches and non-matches. For each 32 × 32 patch,
a ground truth match was found in all neighbouring views using the
ground truth disparity. For each ground truth match, a non-match
was created by randomly sampling a patch within a radius of 5 pix-
els around the match. This allows to create non-matches which can
be difficult to disambiguate from the actual matches. Due to the
synthetic nature of the dataset images, white Gaussian noise with a
variance of σn = 0.1 was added to the LF views to further ensure
matching ambiguities.

From the ground truth matches and non-matches pairs, we can
compute the ROC performance of each test descriptor. The ROC
curves for the 4 test descriptors on the 2 test datasets are shown in
Fig. 2, and the 95% error rate (FPR for TPR = 0.95) is indicated
in the legend. Computation times are shown in Table 1. The results
show that an interesting trade-off between speed and accuracy can be
obtained with the proposed descriptor. In particular, while slightly
slower than the original BOOM descriptor due to the additional an-
gular gradient computation, the SABOM descriptor reaches a lower
95% error rate. Note that the binary descriptors are not only faster
to compute, but also that the computation of their patch distance is
much faster.

https://v-sense.scss.tcd.ie/research/light-field-imaging/a-spatio-angular-binary-descriptor-for-fast-light-field-inter-view-matching/
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Table 1: Descriptors computation time

Single Patch
Descriptor descriptor (µs) distance (ms)
SIFT [17] 0.635 0.152
DAISY [19] 0.254 0.132
BOOM [26] 0.130 0.020
SABOM (proposed) 0.176 0.021

Table 2: Disparity map processing time breakdown (s)

CPM Pyramid Descriptor CPM PF
Level 2 Level 1 Level 0 Total Matching

SIFT 0.131 0.496 1.952 2.579 0.527

0.569DAISY 0.054 0.219 0.843 1.116 0.423
BOOM 0.025 0.099 0.382 0.520 0.325
SABOM 0.059 0.236 0.564 0.893 0.367

3.2. Disparity map estimation

In this experiment we focus on evaluating the disparity map of the
centre view of the LF. For this purpose we apply the CPM on the
3 × 3 views surrounding the centre view. The CPM grid spacing
is 3 pixels. In order to improve the performances in low contrast
regions, we applied adaptive histogram equalisation (CLAHE) to the
input views with θclahe = 1. Note that for the SABOM descriptor,
5×5 views are used to compute the angular gradient to avoid border
effects.

For this experiment, we used the Dense subset of the INRIA
dataset and the whole HCI dataset as the centre view ground truth
disparity is available for all LFs. As indicated in the previous section,
the CPM check cost threshold θdesc can have a significant impact on
the CPM matches density and the overall quality of the evaluated dis-
parity maps. To ensure a fair comparison of all descriptors, a same
level of CPM matches density must be used. However, setting the
right θdesc to get an exact matches density value is near impossible.
Thus, to ensure a fair comparison of all descriptors, we swept the ap-
propriate range of θdesc values for each descriptor in order to obtain
a matching density ranging from nearly 0% to nearly 100%.

The Mean Square Error (MSE) of the CPM and PF disparity
maps were then computed. Note that for the CPM, the MSE is only
computed on the valid matches. Results for the 4 test descriptors
and the 2 test datasets are shown in Fig. 3. A breakdown of the CPM
and PF computation times is reported in Table 2. These results con-
firm that the proposed descriptor can be competitive with SIFT and
DAISY in terms of disparity map estimation accuracy while allow-
ing faster computation times.

Finally, the disparity map estimation was also performed on a
few “real world” LFs from the Stanford gantry dataset [40]. An ex-
ample is shown in Fig. 4 comparing SIFT and SABOM. As indicated
in the figure, computation time reduction of SABOM compared to
SIFT is even more noticeable on this LF which has a higher spatial
resolution of 1024× 1024, while the quality is visually comparable.

3.3. Limitations

As SABOM relies on the angular gradient to improve the inter view
matching accuracy, its performance is limited for sparse LFs, as
the angular gradient of such LFs is not continuous. An evalua-
tion of the ROC performance of the 4 test descriptors on the IN-
RIA Sparse dataset, which contains scenes with a disparity range of
[−20, 20], showed that the 95% error rate of SIFT, DAISY, BOOM,
and SABOM, were 0.71, 0.82, 0.72, and 0.74 respectively. The pro-
posed descriptor is slightly outperformed by the original BOOM,

HCI CPM INRIA CPM

HCI CPM+PF INRIA CPM+PF
Fig. 3: Disparity map MSE after CPM (top) and PF (bottom) when varying
the CPM check threshold θdesc for the HCI (left) and INRIA (right) datasets.

SIFT + CPM SABOM + CPM

SIFT + CPM + PF SABOM + CPM +PF
SIFT computation ≈ 28s SABOM computation ≈ 8s

Fig. 4: Disparity maps obtain on the 1024 × 1024 Stanford LegoKnights
LF centre view. (Best viewed zoomed and in colour).

which shows that the sparse LF angular gradient information does
not bring any improvement.

4. CONCLUSION

We proposed in this paper a novel binary descriptor which can
improve the speed and accuracy trade-off for light field inter view
matching compared to existing descriptors. The proposed SABOM
descriptor improves upon the original BOOM descriptor by inte-
grating angular gradient map responses over 16 orientations at 8
locations. Using synthetic datasets for which ground truth disparity
maps are available, we demonstrated the efficiency of SABOM by
evaluating its ROC performance and its accuracy when used in a
disparity map estimation application.

In future work, further application of the SABOM descriptor
will be investigated, e.g. to speed up inter view matching-based de-
noising and super-resolution filter [31, 32] or colour correction [35].
In addition, adaptation of the descriptor to sparse light fields will be
explored, which could be useful for camera array calibration [33,34].
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