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Abstract

In natural image matting, the goal is to estimate the opacity

of the foreground object in the image. This opacity controls

the way the foreground and background is blended in

transparent regions. In recent years, advances in deep

learning have led to many natural image matting algo-

rithms that have achieved outstanding performance in a

fully automatic manner. However, most of these algorithms

only predict the alpha matte from the image, which is not

sufficient to create high-quality compositions. Further, it is

not possible to manually interact with these algorithms in

any way except by directly changing their input or output.

We propose a novel recurrent neural network that can be

used as a post-processing method to recover the foreground

and background colors of an image, given an initial alpha

estimation. Our method outperforms the state-of-the-art in

color estimation for natural image matting and show that

the recurrent nature of our method allows users to easily

change candidate solutions that lead to superior color

estimations.

1. Introduction

Natural image matting is one of the classical problems

in computer vision and has been researched extensively in

the past. The goal of this task is to predict the transition

from a foreground object in the image to the background.

As opposed to semantic segmentation, these transitions are

not hard borders between the foreground and background,

but rather values between 0 and 1 that denote the opacity of

the foreground object. Mathematically, the input image I is

the combination of the foreground image F and background
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image B according to the compositing equation:

Ii = αiFi + (1− αi)Bi, αi ∈ [0, 1], (1)

for every pixel i in the image. The alpha matte αi that

blends the foreground and background images indicates

the opacity of the foreground object. This problem con-

tains 7 unknown and only 3 known variables and is there-

fore severely ill-posed. To help with that, many matting

algorithms use a trimap as additional input. The trimap

is a rough segmentation into pure foreground, pure back-

ground and an unknown area that could contain any alpha

value. This additional input is especially necessary for older

affinity-based or sampling-based methods that estimate al-

pha values from image patches with known alpha values,

i.e. patches in the predefined known areas designated by the

trimap. However, even for state-of-the-art learning-based

methods, the trimap proves useful to guide the algorithm

and helps it focus on the desired area of the image.

Natural image matting algorithms are in use in various ap-

plications, such as image and video editing, as well as com-

positing and film post-production. However, current state-

of-the-art algorithms have shortcomings when used in real-

world scenarios. First of all, if the predicted alpha is used

for extracting the foreground object from an image to com-

posite a new one, the alpha alone is often not enough to cre-

ate a high quality composite even with a perfect alpha pre-

diction. This is due to the mixture of foreground and back-

ground colors in the transparent regions of the object. The

background color of the original image bleeding through

will be extracted as well and can lead to a disparity of col-

ors in the new composite in many cases, as seen in figure

1. For high quality composites, it is therefore necessary to

also estimate the foreground color of the object. The second

problem with current matting methods is, that they do not

allow for much user interaction if the prediction is not quite

satisfactory. Often, the only tuning option for a user is to

refine the input trimap, which may not be good enough. In

high-quality studio environments for example, it is neces-

sary that artists can easily refine predictions to a very high

level without having to resort to manually touching up the



prediction on a pixel-wise level.

In our approach, we aim to solve both of these issues by esti-

mating not only the alpha value, but also the foreground and

background colors of the input image and allowing more

user interaction into the prediction process. We model our

network as a recurrent inference machine (RIM) [16] that

sits atop existing matting methods and is trained fully end-

to-end with reconstruction and Wasserstein GAN losses

[2, 7]. Our contributions are therefore:

• A fully automatic algorithm that can be added to any

existing alpha prediction algorithm and that estimates

the foreground and background colors for a given al-

pha, essentially solving the inverse compositing prob-

lem.

• Due to the recurrent nature of our algorithm, we al-

low users to update intermediate predictions to further

guide the algorithm, which can lead to much better pre-

dictions through only a minor amount of manual work.

• We show through experiments that our color predic-

tions substantially surpass the state-of-the-art. Espe-

cially our foreground color prediction leads to faithful

new composites.

• Our method is small and lightweight and can process

even high resolution images very fast.

2. Related Work

Traditionally, natural image matting methods could be

classified into affinity-based and sampling-based methods.

However, as with other computer vision tasks, deep learn-

ing methods have proven to be the state-of-the-art in nat-

ural image matting in recent years. Cho et al. [5] pro-

posed a method that combines the predictions of two pre-

vious local and nonlocal matting algorithms and the RGB

image as inputs to a convolutional neural network (CNN)

that directly learns a mapping from these inputs to recon-

structed alpha mattes. Due to the sparsity of training data,

their network was quite small by current standards and only

predicted 27 × 27 patches of the input. Recognizing this

deficiency, Xu et al. [20] made two contributions in their

publication. They proposed an encoder-decoder network

based on VGG16 [18] that could predict the alpha matting

from a full resolution input image and trimap directly. To

train this network, they also released a dataset containing

431 high resolution images and their corresponding alpha,

as well as a benchmark test set that contains a further 50

unique images. Due to the new availability of additional

training data to fully train even larger CNNs, many other

methods followed based on Xu et al. Lutz et al. [13] pro-

posed a generative adversarial network that leveraged the

adversarial loss to improve on high-frequency structures in

the alpha. Tang et al. [19] recognized that any alpha pre-

diction would be more accurate if it had the actual fore-

ground and background colors as input. They proposed a

framework of three consecutive networks that would first

predict the background colors in the unknown region, then

predict the foreground colors based on the input image and

the predicted background colors, and finally predict the al-

pha using the previous predictions. Hou et al. [8] created

a network that simultaneously predicts the alpha and fore-

ground color of the object. Cai et al. [3] proposed a multi-

task autoencoder that disentangles the matting problem into

two sub-tasks: The trimap adaption tasks that predicts the

definitive trimap from a coarse input trimap and the alpha

estimation part. They show improved performance due to

more structural awareness. Li et al. [11] proposes the use of

a Guided Contextual Attention module in their network that

directly propagates high-level opacity information based on

learned low-level affinity. Finally Zhang et al. [23] devel-

oped a method that does not rely on an input trimap for their

approach. They directly predict foreground and background

classification maps from the input image and use this to pre-

dict the alpha of the foreground object.

Unrelated to the previously mentioned matting papers,

Putzky et al. [16] proposed a novel network architecture

to solve inverse problems on which we base our method.

They introduce a recurrent inference machine that takes an

initial guess for the solution as input and predicts an update

step in each iteration. This allows them to solve several dif-

ferent image restoration tasks such as denoising and super-

resolution.

3. Method

Our method aims to solve the inverse compositing prob-

lem by simultaneously estimating the alpha matte, as well

as the foreground and background colors of a given im-

age. Instead of trying to solve either of these problems

from scratch, we rely on an initial guess for the solution

of the alpha and leverage the correlation of the three prob-

lems to solve for the foreground and background colors in

the process. As a result of this, our method can be seen as a

post-processing method that can be used on any of the many

methods that aim to predict the alpha matte of an image.

Our method estimates the foreground and background col-

ors, slightly refines the alpha, and additionally gives users

the ability to easily refine the results further with easy man-

ual user interaction as described in section 4.

To achieve this, we design a recurrent inference machine

[16] to solve the inverse of the forward model given in equa-

tion 1. Traditionally, one way to achieve this would be to

optimize the maximum a posteriori (MAP) solution, given

a likelihood and prior as has been done by Bayesian Mat-



Figure 1: To the left: The input image. In the middle: The foreground extracted from the input image using the ground-truth

alpha and composited onto a black background. To the right: The foreground extracted from our predicted foreground using

the predicted alpha and composited onto a black background. As can be seen, even when using the ground-truth alpha, the

green of the old background shines through in the new composition. This is not the case in our composition.

ting [6] in the past:

argmax
F,B,α

P (F,B, α|I) = L(I|F,B, α)

+ L(F ) + L(B) + L(α), (2)

where L(·) is the log likelihood L(·) = logP (·), α is the

alpha matte and F, B, I are the foreground, background and

observed image colors respectively.

In contrast, a RIM as proposed by Putzky et al. [16] is a re-

current neural network (RNN) that is able to learn the itera-

tive inference of the problem and implicitly learns the prior

and inference procedure in the model parameters. Each

state of the RIM includes the current solution, a hidden

memory state and the gradient of the likelihood to the prob-

lem, which gives information about the generative process

and indicates how good the current solution is. Given an

observation y and a previous solution xt−1, the RIM calcu-

lates the gradient of the log-likelihood ∇L(y|xt−1) as an

additional input to the network and predicts an update step

∆xt such that

xt = xt−1 +∆xt, (3)

as can be seen in figure 2. In this paper, the image I is the

observation y and the foreground, background and alpha

F,B, α form the current solution xt. The log-likelihood in

our case is modeled by the difference between the color in

the observed image and the color that would result from the

composition of the predicted foreground, background, and

alpha [6]:

L(y|x) = L(I|F,B, α) = −
||I − αF − (1− α)B||2

σ2
.

(4)

This corresponds to Gaussian probability distribution cen-

tered around C̄ = αF +(1−α)B with a standard deviation

of σ. From this, the gradient of this log-likelihood is given

by:

∇L(y|x) = ∇L(I|F,B, α) =

[

∂L

∂F
,
∂L

∂B
,
∂L

∂α

]T

=





2α(I − αF +B − αB)
(−2 + 2α)(I − αF +B − αB)

||(2F + 2B)(I − αF +B − αB)||1



 ∗
1

σ2
.

(5)

Since
∂L

∂α
is a sum across all three RGB channels, we abbre-

viate the term with || · ||1. As stated previously, our method

serves as a post-processing for other alpha prediction meth-

ods. As such, we use the output of whichever alpha pre-

diction method we use as a base as the initial guess for the

alpha. For the initial foreground and background predic-

tions, we use the original input image in all areas where

the trimap gives known foreground/background regions re-

spectively and zeros otherwise. If the base method does not

need to use a trimap, we simply use the regions where the

predicted alpha is purely foreground or purely background

as mask.

The RIM then predicts updates for the current solution at

every iteration, that consecutively lead to an ideal solution

for all predictions. A loss is calculated for every iteration

with the final loss being defined as:

Ltotal =

T
∑

t=1

wtL(xt,xtarget), (6)

where T is the total number of iterations, wt is a positive

weighting factor and xtarget is the ground-truth. In this pa-

per we set T = 5 and wt = 1 for all iterations, which

we experimentally found to achieve the best results. Fur-

ther details of our loss function are given in section 3.2. A

visualization of the iterative process can be seen in the sup-

plementary materials.



Figure 2: The Overall system. First, we do an initial alpha prediction using any prediction model. Next, we create initial

foreground and background predictions, using either the trimap or the initial alpha prediction as a mask for the input image.

All three initial predictions form the 7-channel xt. Given the original image y and xt, we calculate the gradient of the

log-likelihood ∇L(y|xt), which we concatenate to xt to form the input of the RIM. The RIM then calculates and applies an

update step ∆xt+1 for xt to form xt+1.

3.1. Network architecture

When designing our network architecture, we deliber-

ately kept it small and lightweight. The full input of the

network consists of the current solution xt = [F,B, α]T

and the gradient of the log-likelihood ∇L(I|F,B, α), re-

sulting in a full resolution feature map of 14 channels in

total. The first convolution layer of the network downsam-

ples the input by a factor of 2 and is followed by a gated

recurrent unit (GRU). Following that, a transposed convolu-

tion layer upsamples the resulting feature maps back to the

original resolution, again followed by a GRU. A final con-

volution layer serves as output layer and reduces the number

of channels back to 7. With the exception of the last one,

all convolution layers use spectral normalization [14] and a

tanh nonlinearity. The number of feature maps for the in-

ner two convolutions is 32 respectively and the number of

feature maps for the hidden states of the GRUs is 128. All

convolution kernels are 3 × 3. The full network structure

can be seen in figure 3.

Our network only contains 1155680 parameters, which eas-

ily fits even on mobile devices. However, the network op-

erates on full resolution feature maps and propagates full

resolution hidden states to the next iteration, which may

use a lot of memory. This is not an issue, however, since

the receptive field of the network is only 11 × 11. Due to

this, even very high resolution images can be processed in

smaller tiles with an overlap between tiles of only 11 pixels.

3.2. Loss Function

Inspired by the success of generative inpainting networks

[21, 22], we use the WGAN-GP loss [2, 7], combined with

a l1-based reconstruction loss to train our network.

Following previous methods [3, 11, 13, 19, 20], we define

the reconstruction loss only over the unknown region of the

image. This leads to the reconstruction loss at iteration t:

L1 =
1

|U|

∑

i∈U

|xt − xtarget|, (7)

where U is the unknown region of the trimap. Note that

we do not calculate the loss independently for the alpha,

foreground and background predictions. xtarget is defined

as the ground-truth foreground, background and alpha con-

catenated to a 7-channel feature map and xt as the update

step predicted by the RIM at iteration t added to the previ-

ous prediction: xt = xt−1 +∆xt.

We further add the WGAN-GP loss to train the RIM with

adversarial gradients and improve prediction accuracy.

3.3. Training details

We train our network on the publicly available matting

dataset published by Xu et al. [20]. This dataset con-

tains 431 unique foreground images and corresponding al-

pha mattes. They further release another 50 unique im-

ages that can be composited with predefined backgrounds

to create the Composition-1k testing dataset. To generate

the initial alpha predictions during training, we use GCA-

Matting [11] as a base since they achieve the best perfor-

mance on the Composition-1k testing set. To produce the

initial foreground and background predictions, we use the

given trimap to mask the input image in their respective

known regions. Afterwards, all images are normalized to

the range of [−1, 1]. Since the training dataset is small,

we follow the improved data augmentation strategy of Li

et al. [11]. This strategy initially selects two random fore-

ground images with a probability of 0.5 and combines them

to create a new foreground object with corresponding alpha.

They follow this by resizing the image to 640 × 640 with

a probability of 0.25 to generate some images that contain



Figure 3: Network architecture. For each iteration, a candidate solution xt serves as input, is concatenated with the gradient

∇L(y|x) and put through the network to predict an update step, which is added to xt. Convolutions are normalized through

spectral normalization (SN) and use tanh as activation function.

nearly the whole image instead of random patches. Follow-

ing this, a random affine transformation is applied to the

image, which consists of random rotation, scaling, shearing

and flipping. Afterwards, a trimap is generated by random

dilation and a 512 × 512 patch is cropped from the image,

centered around a random pixel in the unknown region of

the trimap. Then, the image is converted to HSV space

and random jitter is applied to hue, saturation and value.

Finally, a random background image is selected from MS

COCO [12] and the input image is composited. Naturally,

all applicable transformations are applied to the foreground

image, alpha and trimap to keep them matching.

We use the Adam optimizer [9] with a fixed learning rate of

10−4 and train for 100000 iterations.

4. Manual editing

One of the main objectives of our method is to give users

the optional ability to more directly influence the prediction

process. Due to the recurrent nature of our method, this is

easily achievable. During any step of the prediction, users

can directly manually update any one of the foreground,

background or alpha predictions through image editing soft-

ware. Since all three predictions are fundamentally linked,

changes in one of them can propagate to the other two. For

example, a user may manually inpaint part of the back-

ground that the network struggles with and which may be

easier to adjust for the user than directly changing either

the foreground colors or the alpha. This change propagates

to the foreground prediction and can lead to a much better

foreground in the end. A detailed example of this can be

seen in figure 4. To make sure that the network recognizes

any direct modification of the predictions by the user, we

additionally set the hidden states at the corresponding loca-

tions to 0. The whole process is intuitive and can easily be

implemented as part of any image processing software.

5. Results

We evaluate our proposed method on the Composition-

1k dataset [20], with regards to the alpha matte prediction,

as well as the foreground and background color prediction.

The Composition-1k dataset consists of 50 unique fore-

ground images that have been composited into new images

using 20 predefined backgrounds each, resulting in 1000
testing images in total. To generate our results, we use sev-

eral different published methods for alpha prediction and

use them as initial guess for our method. Using these pre-

dictions, we then generate foreground colors, background

colors and alphas over 5 iterations in total, which we exper-

imentally found to lead to good convergence while keeping

computation time low.

5.1. Foreground and background color prediction

Due to the composited nature of the Composition-1k

dataset, we have the ground-truth background and fore-

ground colors available. Therefore, we can calculate met-

rics for prediction on this dataset. As metrics, we choose

the MSE and SAD of α×F and (1−α)×B as introduced

in [15]. However, due to the nature of the dataset, which

can contain wrong foreground colors in all pixels where the

alpha is 0, we multiply by the ground-truth alpha. This also

disentangles the performance of all evaluated methods from

their performance in predicting the alpha. We further only

consider pixels in the unknown trimap area.

We compare our results against Closed-form Matting [10],

Context-Aware Matting [8] and Samplenet [19]. Closed-

form Matting can predict the alpha matte by solving a sparse

linear system of equations. As a second step and given

an alpha as input, it is possible to solve this equation for

the foreground and background colors instead of the alpha.

For fair comparisons, we use the superior alpha predictions

from GCA-Matting [11] as input. Context-Aware Matting



Figure 4: Visualization of the manual editing process. Top row from left to right: Input image, ground-truth composition,

predicted foreground, predicted background. Bottom row from left to right: Resulting composition, very rough edit to

the background, corresponding editing mask and the composition resulting from manual edit. As can be seen, the color

predictions in this example are bad and incorrectly color parts of the background with foreground colors and vice versa.

After the rough manual edit to the background, the algorithm recovers the correct foreground color.

predicts the foreground and alpha simultaneously through

a deep neural network. By contrast, Samplenet does a full

background, foreground and alpha prediction sequentially

using 3 networks. Additionally, we can use the input im-

age as a baseline comparison. We use the same initial alpha

predictions for our method as in the evaluation of the alpha

prediction, as are shown in table 1.

As can be seen in the table, we achieve the overall best re-

sults for the color prediction by a wide margin, especially

in the prediction of the foreground colors. The background

predictions of Samplenet are marginally better than ours ac-

cording to the SAD, but it performs worse in foreground

prediction. We can also observe that the quality of the

initial alpha prediction has a large impact on the resulting

quality of the foreground and background predictions. The

better the initial alpha prediction is, the better our method

performs. However, even alpha predictions from the out-

dated KNN-Matting lead to foreground colors that are al-

most as good as the colors naively taken from the input im-

age and noticeable better background colors. We also out-

perform the Closed-form solution for the foreground and

background colors, even when given the GCA-Matting al-

pha prediction as input. Furthermore, the Closed-form so-

lution is quite slow in comparison to modern deep learning

methods, which is non-optimal for any interactive applica-

tion. Visual comparisons can be seen in figure 5 and in the

supplementary materials.

5.2. Color prediction over several iterations

Our method is a recurrent neural network and predicts

update steps to the previous solution over several iterations

to output new solutions. We compare our results for the

color predictions in table 2. As can be seen, our predictions

get consecutively better over iterations until they saturate

after t = 5.



Figure 5: Visual comparison on the Composition-1k dataset. From left to right: Input image, Compositions from Context-

Aware [8], Samplenet [19], Ours, Ground-truth.

Foreground Background

Methods SAD MSE (104) SAD MSE (104)

Input Image 58.32 26.49 57.90 26.12

KNN [4] + Ours 59.91 49.25 36.77 15.19

AlphaGAN [13] + Ours 44.27 27.90 40.12 16.93

IF [1] + Ours 37.93 31.98 29.49 15.82

GCA [11] + CF [10] 31.98 23.15 29.40 10.69

Context-Aware [8] 46.93 18.02 - -

SampleNet [19] 42.68 29.26 24.59 7.99

GCA [11] + Ours 28.32 12.10 25.07 5.97

Table 1: Quantitative results of the foreground and back-

ground prediction on the Composition-1k dataset. Best re-

sults are emphasized in bold. Note that not all images could

be predicted for KNN Matting and Information-flow Mat-

ting due to trimaps incompatible with these methods.

5.3. Manual editing

To show the impact of the manual editing process, we

compare the fully automatic output of our method to results

we get when making only small edits during the process.

For this, we take 5 of the images of the Composition-1k

dataset where the automatic prediction generates sub-par

results and spend less than a minute each on manually im-

proving the intermediate alpha predictions. As can be seen

in table 3, even small edits focusing on the foreground mas-

sively improve the color prediction. Naturally, these edits

could be done on the alpha predictions of other methods

as well, however, only our method interlinks the alpha and

color predictions in a way to propagate the changes from

the alpha to the foreground and background color predic-

tions automatically. In other methods the edits to the alpha

would have to be replicated for the color predictions as well,

increasing the amount of work. Please refer to the supple-



mentary materials for the images and edits.

5.4. User study

To further evaluate the quality of our work, we conduct

a user study comparing the foreground color prediction of

our method with Samplenet [19] and Context-Aware Mat-

ting [8]. Following the approach of [8], we take all 31 im-

ages of the real-world image dataset from Xu et al. [20] and

use the predicted alpha and foreground colors to composite

a new image with a plain background. To ensure any dif-

ferences between matting results are only due to the color

predictions, we use the predicted alpha from Samplenet as

initial guess for our method in the comparisons with Sam-

plenet and similar for our comparisons with Context-Aware

Matting.

We recruited 20 participants for our user study for each

of the comparisons. Each participant was submitted to a

short training session where the results of two methods was

shown and the differences explained. This was done to help

people with no prior matting experience spot the subtle dif-

ferences in results.

Each participant conducted 31 trials corresponding to all the

images of the real world dataset. In each trial the original

image was shown at the top with the composited results of

the methods at the bottom. The results were shown one at

a time and the participant could use buttons or the arrow

keys to switch the bottom image between the result images.

The participants were asked to choose the result which they

found more accurate and realistic.

We calculated the preference rate of the participants of our

results and show the mean preference rate and standard de-

viation in table 4. As can be seen, the majority of partic-

ipants preferred our results to those of Samplenet. How-

ever, when comparing to Context-Aware Matting, the re-

sults show no preference of one over the other. Some ex-

amples of our study can be seen in the supplementary ma-

terials. As can be seen, the color differences between our

results and Context-Aware Matting are very minor, which

explains the responses. However, our method still signifi-

cantly outperforms Context-Aware Matting numerically in

the Composition-1k dataset and offers the option to further

improve the results interactively.

5.5. Alpha matte prediction

To show that our method does not degrade the quality of

the alpha matte prediction of whichever method was used

for the initial guess, we compare on the commonly used

evaluation metrics [17]. Our method slightly improves the

quality of the alpha according to the metrics, but no to a sig-

nificant amount. The table with the results of this evaluation

can be found in the supplementary materials.

Foreground Background

Iteration SAD MSE (104) SAD MSE (104)

1 42.06 16.34 35.17 10.67

2 31.18 12.87 27.57 7.20

3 29.18 12.24 25.83 6.33

4 28.41 12.05 25.24 6.05

5 28.32 12.10 25.07 5.97

Table 2: Our results for foreground and background color

prediction over iterations using the GCA alpha prediction

as initial input. Best results are emphasized in bold.

Foreground Background

SAD MSE (104) SAD MSE (104)

Pre-edit 161.50 143.26 60.39 17.25

Post-edit 81.32 22.748 60.21 17.15

Table 3: Our results for foreground and background color

prediction for selected examples before and after manual

editing.

Ours vs Mean preference rate Std

Context-Aware [8] 48.87% 0.15

Samplenet [19] 64.84% 0.19

Table 4: Results of the user study on the real world dataset

[20]

5.6. Limitations

The goal of this work is to introduce a lightweight

method that can be used with any alpha prediction network

to estimate the foreground and background colors that lead

to compelling new composites. However, we do not refine

the input alpha to a significant amount due to the small ca-

pacity of our network. In future work, it may be desirable

to explore an updated network architecture that is able to

further refine inadequate initial alpha predictions.

Further, as opposed to Samplenet, our method does not pre-

dict good background colors in areas where the background

can not, or only barely, be seen in the image. This has no

impact on new compositions and we do not claim to fully

inpaint the background after the foreground has been re-

moved. However, certain applications may find a fully in-

painted background desirable, which we can not provide.

6. Conclusions

In this work, we propose a novel method to estimate

foreground and background colors given an initial alpha

prediction. Our method is lightweight and can easily be

used on top of any other alpha prediction method. We show

that even initial alpha predictions that do not satisfy high-

quality standards generate color predictions that are quanti-



tatively better than the colors directly taken from the input

image. We show through quantitative and qualitative eval-

uation that our method substantially outperforms the state-

of-the-art in foreground color estimation. Further, the re-

current nature of our method allows users to manually edit

parts of the candidate solutions with ease, which can prop-

agate further and lead to better final predictions. We show

that very rough edits to the background candidate solution

can lead to a significantly better final foreground solution

through minimal effort.

7. Acknowledgements

This publication has emanated from research conducted

with the financial support of Science Foundation Ireland

(SFI) under the Grant Number 15/RP/2776.

References

[1] Yagiz Aksoy, Tunç Ozan Aydin, and Marc Pollefeys. De-

signing effective inter-pixel information flow for natural im-

age matting. In 2017 IEEE Conference on Computer Vision

and Pattern Recognition, CVPR 2017, Honolulu, HI, USA,

July 21-26, 2017, pages 228–236. IEEE Computer Society,

2017.

[2] Martı́n Arjovsky, Soumith Chintala, and Léon Bottou.
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