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Abstract

As a rapidly growing medium, volumetric video is gain-
ing attention beyond academia, reaching industry and cre-
ative communities alike. This brings new challenges to
reduce the barrier to entry from a technical and eco-
nomical point of view. We present a system for robustly
and autonomously performing temporally coherent tracking
for volumetric sequences, specifically targeting those from
sparse setups or with noisy output. Our system will de-
tect and recover missing pertinent geometry across highly
incoherent sequences as well as provide users the option
of propagating drastic topology edits. In this way, afford-
able multi-view setups can leverage temporal consistency
to reduce processing and compression overheads while
also generating more aesthetically pleasing volumetric se-
quences.

1. Introduction

Volumetric video creation through multi-view capture
and processing of photo-realistic 3D human performances
is an active research field that involves different disciplines
such as computer vision, computer graphics and 3D geome-
try processing. The increasing interest in this field has been
powered by new developments in immersive technologies
(i.e., augmented, virtual and mixed reality), as these ap-
plications require more realistic and human content. To
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capture these realistic human performances, one typically
needs a multi-camera system that records the performer
from different viewpoints, such as the one proposed by Col-
let et al. [4] or Guo et al. [8], which uses more than one
hundred high-end cameras (including infra-red projectors
and cameras) to achieve the best reconstruction possible in
a very controlled environment. In these systems, 3D re-
construction algorithms are run on a per-frame basis and
the output is a sequence of 3D models (i.e., an independent
mesh and texture image per frame). Some methods address
this problem by enforcing temporal coherence in the 3D re-
construction process [19, 20, 21], however, to avoid stor-
ing large amounts of data per frame it becomes necessary
to apply a mesh tracking algorithm that introduces tempo-
ral consistency in the sequence and enables the reuse of a
significant amount of data. This compression can be facili-
tated by keeping the same topology for as long as possible
throughout the sequence and updating only the mesh vertex
positions. Furthermore, to enable heterogeneous sequences
with variations in the mesh geometry and topology, it is
necessary to split the sequence into regions controlled by
keyframe meshes, similar to methods employed in video en-
coding. The current state of the art for mesh tracking in this
manner works well when consecutive meshes are very simi-
lar to each other which is the case for high-end setups; how-
ever, they can fail when applied to capture methods which
use sparser camera setups [12, 24] or even monocular sys-
tems [26, 27] where there is a significant amount of noise,
or if geometry is lost (for example a hand or entire limb)
due to the challenging capture conditions. Our proposed
approach prioritises generality and scalability by applying
temporal coherence to an unstructured series of meshes in a
completely autonomous fashion, requiring no system priors,
and supporting the challenging conditions presented above.
Lastly, our system allows for the recovery of missing geom-



Figure 1. We present a robust, autonomous method for tracking volumetric sequences which can detect missing geometry and propagate
user edits. Pictured left to right are step-by-step visualizations of the process. The input to our system is a temporally incoherent and
noisy sequence of meshes. We perform pairwise registration using abstraction layers, volumetric segmentation and a keyframing system
which allows for user edits, e.g. the hand recovered in red. We establish correspondences which maintain edits and propagate geometry
throughout a graph-based deformation process.

etry and enables the user to introduce geometry edits that
can be seamlessly propagated through the sequence. In par-
ticular, the proposed system presents the following contri-
butions towards tracking noisy volumetric data from sparse
multi-view capture:

• An automatic, similarity-driven keyframe selection
process based on spherical harmonics that minimises
keyframes and supports varying geometry and topol-
ogy.

• A volume-based segmentation and registration method
for robust tracking of volumetric sequences.

• A tracking system that enables missing geometry re-
covery and realistic propagation of user edits.

2. Related Work
Mesh Tracking. Mesh tracking and registration algo-

rithms, especially when representing the shape and appear-
ance of humans, are an essential part of volumetric video
processing pipelines. Such systems use variably dense ar-
rays of RGB and depth cameras to perform per-frame 3D
reconstruction [4, 8], while other methods use monocular
RGBD sensors [7, 35, 37, 38] and online character template
generation [29, 30, 35, 36]. For each of these systems mesh
tracking and registration is a fundamental process, ensuring
temporal coherence for visual appeal and reduction of data
overheads.

The use of a template-driven method helps constrain the
problem focus toward reliable pose estimation. With recent
developments in monocular 3D pose algorithms [3, 33],
similarly, single-camera performance capture systems can
produce reliable results [10, 34]. However, even if one
was to take pose estimation for granted, the template de-
formation can still become a challenging task and quite
often the approach will be some amalgamation of a cus-
tomised avatar fitted to a pre-defined parametric model such

as SMPL [18]. While the use of a template generally pro-
duces robust results, these systems cannot capture dynamic
changes in topology without the use of some adaptive sur-
face deformation. Habermann et. al [10] present a hybrid
of pose-driven template deformation as well as graph-based
surface alignment driven by 2D keypoints. While this sys-
tem is more capable of modelling the dynamic motion of
clothing, it is still unable to capture drastic changes in topol-
ogy which would stray from the input template such as the
introduction of new objects or changing clothes.

Some approaches acknowledge this problem and instead
opt for the use of an evolving, canonical model which is
constructed over the course of the capture [6, 23, 35]. These
methods are well adapted to modelling temporally sensi-
tive, high-frequency details and can faithfully produce tem-
porally coherent models from noisy RGBD data. How-
ever, these systems are input-limited to the use of depth
sensors which may not be as widely available or scalable
as commodity RGB cameras. For the proposed work we
seek to improve content created from scalable studio setups,
some of which employ multiple arrays of RGB and infra-
red structured light sensors [4, 8] while others present ex-
tremely flexible and economical sparse arrays of commod-
ity cameras only [12, 24]. Given a sequence of unstructured
meshes generated from such setups, the general approach
towards adding temporal coherence is to perform keyframe-
based tracking of sequential mesh pairs. Like many of the
previously addressed tracking algorithms, this work also
leverages the deformation graph of [31]. The correspon-
dences which guide the deformation in such graph-based
approaches are often based on constrained ICP variants [16]
or supported by photometric data [5]. Few systems address
the scenario of missing geometry [11] and even so, they re-
quire strong priors and robust skeleton estimation. In con-
trast the proposed work requires no priors and doesn’t im-
pose any constraints on the mesh topology or number of
independent components.

Keyframe Detection. Many sequential tracking sys-



tems for unstructured mesh sequences rely on some form
of keyframing system in order to select the ideal candidate
frames to begin tracking. Collet et. al [4] propose a num-
ber of heuristics metrics for keyframe selection based on the
genus, surface area and number of connected components.
These metrics are combined to formulate a feasibility score
which is used to drive the keyframe selection.This approach
is reasonably suited to consistent, high-quality input which
would be expected from the system presented in [4]. How-
ever, when applied to the highly inconsistent data typical
of sparse setups, any metric directly dependant on the in-
put topology becomes uninformative (e.g. the mesh genus
can be wrongly represented if the mesh presents numerous
small holes). This same issue is present in the work by Guo
et al. [8], which solves a discrete Markov Random Field in-
ference problem to minimise the number of keyframes and
reduce artifacts, but relies on the error of a mesh deforma-
tion method that takes very detailed and accurate mesh se-
quences. Huang et. al [11] present a keyframe selection sys-
tem based on pose variance, however their approach relies
on accurate skeleton fitting along with image and silhouette
priors. While this approach works well for relatively high-
quality data, when applied to the noisy data expected from
sparse setups the skeleton-optimization approach becomes
unreliable. Furthermore the joint-vertex skinning can suf-
fer where the body shape is obscured by loose clothing.
Our work instead opts for an autonomous keyframe system
based on shape similarity via spherical harmonics descrip-
tors. By using spherical harmonics as an abstract shape de-
scriptor, a shape similarity map can be built that is robust to
frequent and disruptive noise in the input sequence.

3. Method Overview
We propose a tracking system that applies spatio-

temporal coherence whilst also remaining faithful to the un-
derlying motion and structure of the captured volumetric se-
quence. This is a challenging task as the input to such a sys-
tem typically involves a lot of temporal noise, can present
high-speed motion and may require demanding shape defor-
mation, especially if the sequences are captured with sparse
camera setups. We propose a system which requires no pri-
ors other than the input mesh sequence and can be equally
evaluated on any volumetric video platform which gener-
ates unstructured mesh sequences.

As abundant noise and irregularity can be expected, the
proposed method seeks to generate simplistic representa-
tions of the input data for some steps of the system via
abstraction layers, without the use of model fitting or tem-
plates in order to maintain generality. Abstraction layers are
generated by detaching the vertex data from the mesh, fil-
tering outliers and small unconnected components, and ap-
plying an adaptive isotropic remeshing [25] which results
in a quasi-uniformly distributed set of sample points with

Figure 2. Shape similarity descriptors are used to generate a simi-
larity score for each mesh which is used to define tracking regions.
Keyframe meshes are selected by using a feasibility score within
regions and tracking is then performed sequentially outwards from
the keyframe mesh toward region boundaries.

sufficient density. This creates an abstraction of the input
mesh which supports some key aspects of our system such
as the preliminary step of automatic keyframe mesh selec-
tion driven by shape-similarity (Section 4). They are also
used in the following step for establishing dense volumetric
correspondences capable of detecting missing geometry and
propagating user edits (Section 5). These correspondences
drive a sequential registration by means of a deformation
graph (Section 6). Finally, we apply a post-processing step
in the form of a dynamic 3D Kalman filter applied to mesh
vertices tracked across a region (Section 7).

4. Similarity-Driven Automatic Keyframe
Mesh Selection

The goal of the keyframing system is to simultaneously
minimize the cumulative error from sequential tracking and
select the minimum number of meshes, N , which can en-
capsulate the shape and motion represented by an unstruc-
tured sequence of meshes, M{1..T}. With this goal in mind
we propose a system which partitions M{1..T} into sequen-
tial groups based on shape similarity. Thus, given a shape-
similarity score for all meshes in the sequence which indi-
cates a per-frame similarity to the other meshes, we infer
that highly dissimilar frames will introduce errors when at-
tempting to track back against other meshes in the sequence.

The central metric exercised in this process is the shape-
similarity score. In order to establish shape similarity in
a computationally effective manner, rotation-invariant de-
scriptors, di, are generated for each mesh using the spheri-
cal harmonic representation system by Kazhdan et. al [14].
With this metric, we compute a similarity matrix among all
meshes, [did>j ]1≤i,j≤T , where the value at [di, dj ] is the dot
product of di and dj . Mesh similarity score is then defined
as the mean value of the matrix per row. To reduce high
frequency variance, this one dimensional signal can then be
filtered using a moving average filter.



Figure 2 illustrates the process further by plotting a typ-
ical similarity score overlaid by the determined tracking re-
gions and keyframe meshes determined as above. From
these keyframes the framewise registration will be per-
formed outwardly toward region boundaries. By defining
region boundaries on frames with low similarity score we
effectively isolate the error that would be introduced by at-
tempting to force dissimilar frames to register to adjacent
frames. Despite filtering high-frequency variance in the
similarity score, we still employ a fixed minimum separa-
tion value λmin between selected minima i.e. region bound-
aries, which maintains a minimum keyframe to frame ratio.

Within each region, a keyframe must be selected which
produces the smallest cumulative error when tracked se-
quentially towards the region boundaries. Collet et al. [4]
propose a feasibility score based on hueristically deter-
mined characteristics of the mesh topology, specifically the
surface area, genus and number of connected components.
For noisy input this score is unreliable and incoherent. In-
stead we apply the score to abstracted representations of
the input meshes which filters out high-frequency topol-
ogy noise and provides coherent input. We further mod-
ify the equation to accommodate the larger impact of genus
over surface area on keyframe selection and add a nega-
tive weight for region boundary proximity to discourage
keyframe selection adjacent to tracking region boundaries.

5. Dense Volumetric Correspondences
Given a selection of keyframes and defined regions, the

tracking process is performed outwardly from the keyframe
up to the region boundaries as shown in Figure 2. Each
pair-wise mesh registration is driven by robust, volumet-
ric correspondences and a topologically coherent deforma-
tion graph. We use the abstraction-layer meshes on both
the source and the target mesh, as a robust framework for
matching reliably significant details. The use of abstraction
means that the correspondence accuracy and cost is rela-
tively constant regardless of the size of the input.

The abstraction layers are used as the basis to estab-
lish dense pairwise correspondences preserving robustness
to missing geometry. This is done by volumetrically seg-
menting them, and performing a series of alignments from
the source layer to the target layer via matching segments.
To ensure a reasonable alignment there must be consistent
segmentation between the source and target abstraction lay-
ers, so we need to segment the former and transfer that same
segmentation to the latter.

Our approach follows the idea of a pseudo-semantic seg-
mentation, i.e., creating segments at sharp changes in vol-
ume which generally resemble the boundaries of joints and
limbs. In comparison with traditional animation rigs, this
approach is motivated by the idea that articulated motion
tends to be most non-rigid at joints and less so along bones.

Figure 3. The abstraction and segmentation process as a precursor
to segment-based alignment. A typical 25K vertex mesh is reduced
to 4.5K and segmented.

Figure 4. Segmentation map is transferred from the source abstrac-
tion layer to the target abstraction layer. Any missing segments are
fused and flagged for rigid ICP.

Thus, we prioritise the semi-rigid parts of the mesh to drive
the correspondences. The pseudo-semantic segmentation
map is created using the shape diameter function as pro-
posed by Shapira et. al [28] and it is organised in a hierar-
chy from least-connected to most-connected components as
a guide for resolving segmentation issues. For example, if
the segmentation creates many small components, they are
fused to the least-connected neighboring segment. Thus,
fusion tends to occur from limb-ends towards the central
component. Figure 3 shows the abstraction layer creation
for a typical mesh and the segmentation result.

A global rigid ICP alignment is performed between the
source and target abstraction layers prior to transferring the
segmentation of the source layer to the target abstraction
layer. Semi-sparse matches between target and segmented
source are then calculated using ICP with strict normal
alignment tolerance. Typically, in the case of missing geom-
etry (e.g., a limb or other thin structure) there is a large mis-
match in segment size. So we perform a coherence check to
compare the size of a segment between the source and target
abstraction layers and if a mismatch is detected, the segment
is flagged to be fused with its nearest connected neighbor.
The flagged segments are recorded and will aligned differ-
ently so as to preserve the structure. Figure 4 illustrates
typical segmentation transfer from source to target.

Once the segment map has been successfully transferred,



a segment-wise alignment is performed using an augmented
version of the Coherent Point Drift (CPD) algorithm [22],
applied to the point cloud respresented by the vertices of the
meshes. In some cases large segments can be encountered,
for example, the central chest region or instances of multi-
ple fused segments. Instead of applying the standard CPD
algorithm and encountering performance bottlenecks due to
size, we provide the following adaptation to the CPD algo-
rithm which allows for upscaling the alignment that would
register two smaller point clouds. This effectively approxi-
mates the alignment of a large dataset for the computational
cost of a significantly smaller one. If the source and target
segment are relatively large clouds S and T respectively,
then given some uniformly downsampled clouds s and t,
the alignment via standard CPD is given as:

s′ = s+GstW (1)

where the aligned cloud s′ is calculated as the input cloud
plus the affinity matrixGst times a weighted transformation
matrixW , which is solved in the main part of the CPD algo-
rithm. Following this calculation, if Gst is replaced by the
affinity matrix between s and S i.e. GsS, the alignment can
be upscaled to the original size of S by a second application
of Equation 1:

S′ = s′ +GsSW (2)

Where W is the same transformation matrix solved for in
Equation 1. This upscaling naturally simplifies the align-
ment calculated for W but requires much less computation
time. Considering that at a segmentation level the align-
ment is approximately rigid, so any loss of accuracy due to
scaling is negligible. This process is applied to all segments
with the exception of those flagged with missing geometry.
These segments instead undergo a purely rigid ICP align-
ment to prevent deforming a segment into a target which is
significantly absent. This segment-based alignment of the
source abstraction layer to the target abstraction layer can
now be used to drive the deformation graph optimization.

6. Deformation Graph Construction and Ap-
plication

After the first abstraction layer has been coarsely aligned
with the target mesh via segment-based registration, a sec-
ond layer of abstraction is created from the aligned first
layer to assist in generating the structure for the deformation
graph which will be used to smoothly reshape the source
mesh towards the target. In brief, the deformation graph
framework consists of a set of nodes evenly distributed
about a mesh with edges connecting regions of influence.
Each node n represents a rotation Rj and translation tj for
a set of nodes nj = n1..nJ . Thus, for any particular mesh
M of vertices vmεM , the transformed vertex v

′

m is given

by:

v
′

m =
∑

njεN(vm)

w(vj , nj) [Rj(vm − nj) + nj + tj ] (3)

Where N(vm) is the set of nodes which influence vm and
w(vj , nj) is the skinning weight of a given node towards
vm, following the work of Li et al. [16]. The translations
and rotations for each node are found by formulating them
as a non-linear optimization problem. We model the opti-
mization problem in this work on the cost function of Guo
et al [9], driven by the aforementioned correspondences.

6.1. Detail Synthesis

Regardless of tracking accuracy, the nature of keyfram-
ing will introduce popping artifacts as the topology changes
across a region boundary. To address this issue, one could
attempt to directly re-align the output topology to the tem-
porally coherent fine details in the input sequence as in [15].
This approach works best when the input noise is relatively
small and fine surface details deform slowly. Given that the
input to our system may exhibit extremely large perturba-
tions due to noise, this approach will produce incoherent re-
sults. Instead we opt for a boundary-blending interpolation
technique, analogous to deblocking filters used in decom-
pression [17]. Given region sets of 0 < r ≤ R containing
tracked frames rt, for timesteps t ∈ [0..T ], we perform a
boundry-crossing alignment of the last frame in (r − 1)t=T
to the first frame in rt=0 as if it were a normal pair-wise
alignment. We then perform a highly non-rigid surface
alignment by relaxing the rigidity parameters which creates
a detail layer for synthesising surface level details. For each
step between the final frame and the keyframe in (r − 1)
we perform a LERP operation between the detail layer and
coarse alignment in order to create a gradient between the
deformations. Using cached transformations from the track-
ing process we can invert and accumulate them as needed to
back-project the LERP states to each time step between the
last frame in the region and the keyframe. This same pro-
cess is repeated in the forward direction from (r − 1) to r.
This approach has the advantage of being completely robust
to surface noise as well as significantly reduced computa-
tional cost of reverse tracking and fusion due to the reuse of
cached transformations.

7. Sequence Smoothing
Temporal noise may still be observed in the final result

despite the smooth nature of the as-rigid-as-possible defor-
mation framework. This noise usually takes the form of
high frequency flickering of the vertex positions and can be
visually unappealing. However, given a sequence of meshes
which now share the same topology it becomes possible to
filter the vertex positions over time against high frequency



noise. To achieve this we apply a standard 3D Kalman fil-
ter [13] to the new vertex positions within the calculated re-
gions treating the keyframe as the initial position and each
subsequent frame as a set of observations. The transition
matrix used is a simple linear motion model for points in 3D
Cartesian coordinates in order to maintain complete gener-
ality and avoid introducing constraints via any inherent as-
sumptions of a more complex motion model. Regarding
the model parameters, a small process noise Q and larger
measurement noise R is used such that R/Q ≈ 1e2, thus
prioritizing smoother motion over observations. In prac-
tice this Kalman filter can inhibit motion over time and lead
to noticeably larger popping effects between keyframes. To
reduce this we would like the Kalman filter to be most effec-
tive when underlying motion is small and to ignore vertices
with large per-frame displacement vectors. To address this
we perform an offline motion dynamics analysis per ver-
tex and use the displacement deltas to negatively impact the
model correction. To this effect we reduce the lag of “gen-
uine motion” and apply the filter in an adaptive manner.

8. Results
In the following section we validate the proposed method

with quantitative, qualitative and ablation studies. We eval-
uate the keyframe selection metric in comparison to the fea-
sibility score heuristic presented by Collet et. al [4]. We
also assess the accuracy of the proposed correspondence
and deformation framework against the state of the art using
numerous challenging sequences, free from temporal noise
as a baseline for ground-truth evaluation. Furthermore, we
perform qualitative evaluation of several sequences with
different levels of noise and artifacts, captured with sparse
multi-view setups. Finally, we demonstrate the application
of the geometry recovery, edit propagation and smoothing
aspects through realistic examples.

8.1. Keyframing

To evaluate our proposed method for keyframe selection
we illustrate the results of the similarity score compared
to the feasibility metric proposed by [4] when applied to
a challenging sequence with drastic topology changes, Fig-
ure 5. Furthermore, this sequence was captured in a budget
studio using 12 RGB cameras and contains a lot of struc-
tured noise. We demonstrate the tracking results for this se-
quence using the proposed keyframe sequence against the
greedy-selection algorithm proposed by Collet et. al [4].
The proposed approach produces smaller error while signif-
icantly reducing the number of keyframes needed, Table 1.

8.2. Tracking Evaluation

We evaluate the performance of our system against two
state of the art approaches which best represent common

t t+1 t+2 t+3
Figure 5. Autonomous keyframe selection: (top) input from a se-
quence featuring many similar topology changes. (mid) proposed
algorithm which identifies a keyframe at t>t+3 and tracks from
t>3 toward t. (bottom) the system of Collet et. al [4] which at-
tempts to resolve the geometry change by stretching before even-
tually giving up and creating a new keyframe at t=t+2.

Ours Collet et. al [4]

Max Error 0.0651 0.0662

Median Error 0.0205 0.0208

# Keyframes 13 19

Table 1. Keyframe evaluation on twirl sequence containing 170
frames with large topological changes and fast motion. Errors cor-
respond to Hausdorff distance in relative units.

(A) (B)
Figure 6. Detail Synthesis: (A) and (B) show a topology change
where tracking regions meet. (A) uses the temporal detail synthe-
sis of Li et. al [15] while (B) is the proposed method.

techniques in surface-based non-rigid registration. The
most general of which being Amberg et. al [1] which is
applicable to any type of surface or motion and attempts to
iteratively solve vertex positions globally with locally vary-
ing ”stiffness”. Lately, however more systems closely re-
semble that of [9], iteratively solving point-to-plane corre-
spondence driven deformation graphs. To objectively eval-
uate the performance of our method we use the dataset from
Vlasic et. al [32] which features mesh sequences generated
by animating a pre-defined template. In this way the input
can be considered free from reconstruction artefacts which
establishes a reliable reference point for common error met-
rics like Hausdorff distance [2]. We also present qualita-



Sequence
Max Error Median Error

Ours [9] [1] Ours [9] [1]

Crane 0.0424 0.3432 0.3753 0.0019 0.0338 0.0278

Jumping 0.2002 1.4723 0.3549 0.0019 0.0382 0.0145

Bouncing 0.0891 0.9982 0.4234 0.0027 0.0565 0.0151

Handstand 0.0054 0.6450 0.1706 0.0009 0.0023 0.0032

Swing 0.2386 0.4298 0.0813 0.0031 0.0185 0.0074

Table 2. Ground-truth evaluation of tracking. Figures are rela-
tive to the scale of the input data. Results are given as Maximum
Hausdorff Error (max) and Median Hausdorff Error (med).

tive results of each approach applied to a mix of the above
dataset as well as volumetric data captured from multi-view
capture setups. Furthermore, we demonstrate the ability of
our system to propagate user edits and recover lost geome-
try by conducting experiments which would replicate some
expected user edits or volumetric capture failure modes.

8.2.1 Ground Truth Evaluation

For a fair evaluation of the tracking error introduced by
each system, each dataset was given the same keyframes
and tracking regions. In this way the error metric provides a
direct indication of the correspondence robustness and de-
formation fidelity. The results of Table 2 shows that our
system introduces fewer errors in multiple ground-truth se-
quences which exhibit highly dynamic and varying motions.

8.2.2 Qualitative Evaluation

It can be seen from Figure 7 that where fast motion is con-
cerned, the proposed system shows robustness in both cor-
respondence matching and large deformation. In contrast
to [9] the use of volumetric correspondences over standard
normal-constrained ICP methods allows for reliable match-
ing along fast pose changes. The as-rigid-as-possible defor-
mation constraint prevents any large pose changes in [9] de-
spite the likely errors in correspondences resulting in either
largely unchanged poses or extreme deformations where the
solver struggled to converge. This is evident in (b) for all
cases of Figure 7. In contrast, the naive global deformation
of [1] exhibits very little robustness to bad correspondences
and can compress thin structures due to fast motion. This is
most clearly seen in the hands and feet in (c) where we see
a larger range of motion has led to surface compression due
to nearest-neighbour correspondences.

8.2.3 Persistent Geometry Evaluation

We demonstrate the ability of our system to recover and
propagate pertinent features in some conventional and chal-

lenging sequences captured from multi-view volumetric
systems. In particular Figure 8 illustrates a sequence which
was highly occluded and contained a fast moving football
being volleyed. Large sections of the mesh exhibit intermit-
tent missing portions as well as difficulty reconstructing the
ball, sometimes across many sequential frames. Our geom-
etry aware system was able to retain important features in-
cluding the ball, while still registering to the underlying mo-
tion. In comparison, template or skeleton-based approaches
are simply unable to track foreign objects without manual
intervention.

We further illustrate geometry propagation in Figure 9
as well as a sample case for user edits. In such a case
the reconstruction failed to recover the finger detail in the
hand of the actor (top right). The user may edit the nearest
keyframe(s) and manually restore the data in any 3D mod-
elling software. Afterwards, the system inherently detects
the absent geometry through the tracking process and will
propagate the edit throughout the frames influenced by the
given keyframe. The system is also capable of much larger
edits such as the addition of props. The added geometry
becomes rigidly tracked along with the nearest connected
component and thus it realistically follows the underlying
motion while maintaining intact structure.

8.3. Detail Synthesis

We compare our detail synthesis approach to that of Li
et. al [15] which was subsequently used by Guo et. al [9]
and present the results in Figure 6 of a typical noisy se-
quence from a sparse camera studio setup. The benefits of
the proposed boundary-aware detail synthesis can be seen
as a smoother transition across frames while the approach
of Li et. al [15] produces a sharp boundary transition with
large topology changes, resulting in noticeable popping ef-
fects. In addition, the proposed method is robust to input
noise as it only seeks to smooth tracking region boundaries
while the synthesis of Li et. al [15] manifests input noise in
the hands and hair.

8.4. Smoothing

Smoothing not only helps to reduce high-frequency,
flickering motions, it also improves the quality of propa-
gated user edits and recovered geometry without the need
for expensive 3D flow. Referring back to the recovered fast-
moving football in Figure 8 (Right, light blue), the motion
of the ball becomes static in the recovered frames from hav-
ing no connected reference segment to propagate to. The
smoothing filter helps to interpolate the motion between the
static frames and the next observation of the ball. Figure 8
(Right, dark blue) illustrates the ablation results where the
smoothing process can help interpolate the missing motion.
Thus, the smoothing and interpolating motion greatly im-
proves the temporal coherence of the end result.



source target (a) (b) (c) source target (a) (b) (c)

source target (a) (b) (c) source target (a) (b) (c)
Figure 7. Qualitative results of some challenging sequences containing fast motion. Presented for each sequence are: the source, final
target, (a): the proposed method, (b): Guo et al. [9], (c): Amberg et al.[1]. In each case the results are the output of successively tracking
the frames between the source and target.

Figure 8. Fast moving objects can be lost or cause occlusions (left,
top row). The proposed system can track multiple moving ob-
jects and provide geometry recovery (left, bottom row). Pictured
right (light blue) are 3 successive frames tracked without motion
smoothing. Pictured right (dark blue), the same 3 frames where
interpolation has occurred as a result of motion smoothing.

9. Conclusions and Future Work

We present a robust autonomous tracking algorithm
which can detect discrepancies in input data and can prop-
agate pertinent geometry. The system outperforms the state
of the art for available datasets and requires no priors of the
input sequence. Dense volumetric correspondences through
shape abstraction provide an indiscriminate shape registra-
tion framework which is robust to large or fast motions. Fur-
thermore, our system allows for drastic alterations of the
input mesh which can be reliably integrated with the un-
derlying motion, enabling a new domain for creative free-
dom and post-production. While the presented approach is
robust and achieves large data reductions, it still requires
keyframes which is a larger workload than solving for a
global template. It would be desirable to extend this work to
create a global template without resorting to the constraints
of parametric templates or pre-defined animation rigs. Also,

Figure 9. Geometry recovery & propagation. Top left: A miss-
ing leg is recovered from a walking sequence. Top right: A user
manually restores the hand to a keyframe which is then propa-
gated. Bottom: User edits may also be extreme additions such
as props.(a) source, (b) target, (c) edited source (d) propagated to
target over multiple frames

while 3D Kalman smoothing produces visually appealing
results, it could likely be improved upon with further explo-
ration of its many evolutions. It is hoped that this approach
may inspire further work towards low-end, cost-effect vol-
umetric video such that the popularity of the medium may
continue to flourish beyond niche groups within academia
and industry toward the creative communities.
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Rhodin, Dushyant Mehta, Hans-Peter Seidel, and Christian
Theobalt. Monoperfcap: Human performance capture from
monocular video. ACM Transactions on Graphics (ToG),
37(2):1–15, 2018.

[35] Tao Yu, Zerong Zheng, Kaiwen Guo, Jianhui Zhao, Qionghai
Dai, Hao Li, Gerard Pons-Moll, and Yebin Liu. Doublefu-
sion: Real-time capture of human performances with inner
body shapes from a single depth sensor. In Proceedings of
the IEEE conference on computer vision and pattern recog-
nition, pages 7287–7296, 2018.

[36] Qing Zhang, Bo Fu, Mao Ye, and Ruigang Yang. Quality dy-
namic human body modeling using a single low-cost depth
camera. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 676–683, 2014.

[37] Zerong Zheng, Tao Yu, Hao Li, Kaiwen Guo, Qionghai Dai,
Lu Fang, and Yebin Liu. Hybridfusion: Real-time perfor-
mance capture using a single depth sensor and sparse imus.

In Proceedings of the European Conference on Computer Vi-
sion (ECCV), pages 384–400, 2018.
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