
Semantic Crowd Re-targeting: Implementation for Real-time Applications
and User Evaluations

David L. Smyth*, Gareth W. Young, Jan Ondrej, Rogerio da Silva, Alan Cummins, Susheel Nath, Amar Zia Arslaan,
Pisut Wisessing, and Aljosa Smolic

ABSTRACT

Crowd simulation is the act of simulating and controlling the dy-
namic movement of large groups of virtual characters. Crowd sim-
ulation is traditionally a complex and time-consuming process, re-
quiring extensive manual effort to achieve. On the one hand, com-
mercial and liberally licensed tools tend to have many aspects of
simulation tightly integrated which can be prohibitively difficult to
re-configure, on the other, paying extras can be far more costly.
In this context, the re-use of existing simulated crowds has been
identified as a valuable cost-saving approach to crowd simulations.
Previous approaches have investigated the use of environment se-
mantics, but they have not been integrated with a commonly used
simulation platform, rendering their usefulness limited. We present
a novel approach to crowd simulation using an emergent system
for re-targeting autonomous crowds and report on the findings of
a problem discovery study, analyzing and establishing key aspects
of functionality, usability, and user experience. Our results provide
a breakdown of the crowd simulation process with corresponding
time-on-task metrics to provide a reference point for future scien-
tific research into crowd simulation systems. Furthermore, we re-
port on how users react to a system that involves the use of semantic
data to facilitate the re-use of existing crowd simulations. We an-
ticipate that other researchers will follow suit, to develop tools that
are both innovative and usable in crowd simulation practices.

1 INTRODUCTION

In recent years, crowd scenes in various media productions have
turned virtual, with well-known examples including I am Legend
and World War Z. A variety of standalone tools and software suites
have come into existence to help automate this task, such as Mas-
sive [2], Menge [3] and Miarmy [4]. These tools have been applied
in general crowd simulation areas, which encompass evacuation
scenarios, smart city footfall modeling, and pedestrian modeling for
self-driving cars. However, these tools tend to be complex and re-
quire expert knowledge to use effectively. Moreover, few tools cur-
rently exist for rapidly prototyping crowd simulations, which can
often be a crucial task in a dynamic production environment. Re-
cent developments have explored the use of smart assets [26], based
on the use of machine learning to automatically generate semantic
information. We predict that future crowd simulation systems will
take advantage of semantic information to move towards individu-
ally autonomous agents, leading to more convincing individual and
emergent behavior and facilitate the re-use of existing crowds as a
valuable addition to crowd simulation software.

Previous approaches to crowd simulation have investigated the
use of environment semantics, but have not been integrated with
a commonly-used simulation platform, rendering their usefulness
limited [14]. The SAUCE project [1] has involved numerous in-
dustry and academic partners who have echoed the need for crowd
simulation software to exist as part of a commonly used proto-
typing/production platform. Creating crowds of individually au-
tonomous agents has been traditionally hard to achieve using AI
due to processing power [12] and insufficient data, but with new
machine learning techniques and the advancement of computational
power due to Moore’s law, this has become more achievable. This

*Corresponding Author: DSmyth3@tcd.ie

has been demonstrated in [28], where a deep reinforcement learn-
ing approach was used to learn a motion controller which can then
provide a natural sequence of motions for virtual avatars.

We propose a modular approach to crowd simulation that facil-
itates re-use by relating crowd behavior to environment semantics.
In this implementation, the process of developing a general crowd
simulation is broken down into constituent components, with inter-
faces between the components providing a way for the components
to be configured. To guide the future development of such tools,
we present a problem discovery study that outlines key aspects of
interaction relating to functionality, usability, and user experience.
Previous user studies for crowd simulation systems have used met-
rics to investigate aspects such as trajectory [27], density [9] and
flow [25]. However, few have investigated metrics related to the
use of the crowd simulation system in practice. Therefore, we have
applied human-computer interaction (HCI) metrics to measure and
report on user experiences of our crowd simulation toolkit to guide
future research and development of such toolkits. A breakdown
of the crowd simulation process with corresponding time-on-task
metrics is also presented to provide a baseline for future scientific
research into practical crowd simulation systems. It is anticipated
that future researchers will develop crowd simulation tools that are
both innovative and reusable. Thus, our main contributions are:

1. The design of a system to semantically annotate a virtual en-
vironment, with a corresponding API to parse semantic labels
into C# objects to be used directly with navigation and be-
haviour modules.

2. The implementation of potential field and behavior trigger
modules which depend on environmental semantics and a path
compression algorithm which preserves trajectories.

3. A user-centered heuristic problem discovery experiment.

2 BACKGROUND

A crowd simulation should “expect to simulate the visual texture
and contextual behaviors of groups of seemingly sentient beings”
[21, p. 1]. A crowd can typically be described at a high-level by a
global set of requirements (e.g. evacuation), but it is also noted that
“computational methods for modeling one set of requirements may
not mesh well with good approaches to another”. [21, p. 1]. This in-
tuitively means there is no “silver bullet” for computational crowd
simulation as one approach will typically not work well for every
situation. This has led to several key features being identified as dis-
tinct axes for crowd simulation research [13]. To achieve acceptable
results concerning appearance and individuality in a production set-
ting, user input is required, as this is a highly nuanced and subjec-
tive facet that goes beyond current capabilities of autonomous sys-
tems. Therefore, in the presented work we focus on the function,
autonomy, time, and usability aspects of crowd simulation.

Crowd re-use can be largely facilitated through behavior modi-
fication based on environment semantics. Kraayenbrink et al. [14]
propose an approach in which crowd agents query their environ-
ment to decide which behaviors to execute, parameterized by the
semantics. They demonstrated the benefit of this approach by us-
ing the same crowd in two differently configured airport terminals,



proving that utilizing semantics is viable. They note that a modu-
lar approach allows a custom implementation of an agent behavior
model and motion planner.

Torrey [24] suggested the use of multi-agent reinforcement
learning to learn a policy for each crowd agent. She showed that by
adjusting the reward function and specifying the environment state
suitably, agents were able to learn a policy which converged and
led to diverse behaviour that was stated analogous to crowd agents
having “personalities”. A key challenge was how one should pick
the state description and actions for crowd agents. We note that by
varying these factors, it could be possible to generate diverse and
heterogeneous crowds that could be simply re-trained when placed
in a new environment. Subsequent papers have built on this proof
of concept and have been applied to domains such as simulated au-
tonomous pedestrian navigation [18] and collision avoidance [10].

More recently, a three-tiered framework was proposed that
breaks down semantic information into a geometric, semantic and
application level [13]. Jiang et al. specifically noted that previ-
ous works neglected to model the environment for the crowd sim-
ulation and emphasized the facilitation of interactions between the
crowd members and their environment via their method. Experi-
ments demonstrated their ability to modify crowd behavior based
on the environment semantics. The implementation was not inte-
grated into a commonly used framework and the authors note that
a simulation could be created using the software in several hours,
presumably for a user with expert knowledge.

3 SYSTEM DESCRIPTION

We propose a re-usable crowd simulation system that depends on a
semantic representation of the environment. Different approaches,
such as reinforcement learning, have shown great potential in creat-
ing autonomous crowd agents, but they rely on percepts from their
environment to guide their behavior. Moreover, any approach in
which the crowd agents modify their behavior based on the envi-
ronment require their environment to be suitably annotated. Our
prototype system is, therefore, composed of two main parts. The
first is a toolset that allows the user to semantically annotate the
environment, where the toolset defines a set of interfaces specified
by user and on which the crowd behavior will depend. The sec-
ond part of the system is a set of tools that modify the crowd’s
navigation and behavior. This method separates the scene informa-
tion from the crowd implementation. Re-targeting of an existing
crowd is achieved by semantically annotating the new environment
according to JSON schemas, which can be done manually or by us-
ing classifiers. The semantics are subsequently processed by navi-
gation and behaviour modification algorithms to derive parameters
for the navigation and behaviour modules of the existing crowd.

3.1 Semantic Annotation
Re-usable simulated crowds must be able to adapt to new environ-
ments and therefore depend on contextual information to modify
their behavior. We developed a system to allow the semantic anno-
tation of environment assets and implemented it in the Unity game
engine. The following principles guided our design decisions:

• Crowd behaviour modification algorithms typically require
strictly-defined input data, so validation is necessary.

• Semantic data should modifiable, both manually or using an
automated classifier.

• Semantic data needs to be easily serialized and de-serialized
and preferably stored in a platform independent format.

• The storage format should support rich data structures with
contextual data, allowing for different interpretations

• The storage format should be language independent.

Figure 1: Schema

Figure 2: JSON object

The presented system uses the JSON
file format, with JSON schemas provid-
ing data validation, as this approach has
been shown to work well for classifying
large asset stores [26]. Therefore, the
toolset consists of an API with a corre-
sponding Unity interface which allows
the user to create a JSON schema, cre-
ate JSON files with a structure given
by a schema, validate the JSON files
against the schema, and finally parse
the JSON files into a C# object. Cru-
cially, this guarantees structural valida-
tion before being interpreted by navi-
gation and behavior modification mod-
ules. Furthermore, our Unity interface
allows the user to easily add, remove,
update and validate fields directly, or
indirectly through the API. The advan-
tage is that a machine learning classi-
fier could provide the associated data,
or an artist could use their own judg-
ment. Scripts are provided to easily
update and validate the semantic data
through the Unity interface. The user
can also directly update the JSON via a
text editor. In this way, users can first
define a clear interface which seman-
tic data must adhere to, and then create
rich data relating to objects within the
environment. Once the environment
has been annotated, the JSON files are
parsed into C# objects which can be
used by navigation and behavior modi-
fication modules.

3.2 Potential Fields for Navigation

The potential field approach has been extensively used in previous
approaches to crowd simulation [25]. We built on this by calibrat-
ing parameters of the algorithm automatically from the semantics
of the environment. For practical purposes, we found this was a
successful approach, since all participants in our evaluation, out-
lined in section 4, successfully used this module without needing to
understand technical details, in contrast to previous research.

Our approach was integrated the C# Unity toolset using the se-
mantic data interface outlined above, which can simply be added as
a component to crowd members. We further integrated this com-
ponent so that it can be used in tandem with the NavMeshAgent
built-in component. Since the objective behind the system is to
implement a re-usable crowd, this tool was designed to primarily
respond to the semantic environment and to be highly configurable
for multiple scenarios. The novelty of this approach is that it is
calibrated through the semantics of the environment.

Our implementation is a mapping from R2→ R, representing 2-
D spatial coordinates and potential respectively. We assume that
paths will be projected onto a surface if it is not planar. The gradi-
ent is interpreted as force, which can be applied to an agent to guide
navigation. Specifically, the potential, U at any point in R2 is calcu-
lated as the sum of an arbitrary number of differentiable functions:
U = ∑

N
i=0 Ui. A path between any two given points is calculated

by using one global function to “tilt” the potential field towards the
goal and other user-defined local functions to specify obstacles or
repulsive regions. A modified gradient descent algorithm is then
applied, shown in algorithm 1. A 2-D projection of a potential field
with gradients is shown in figure 4 and the corresponding 3-D field
in show in figure 3. The goal position is used to anchor a piecewise



Figure 3: 3-D potential function Figure 4: 2-d projection

Figure 5: Gradient descent generated path (top) compressed by a
factor of 20 (bottom) using a piecewise-linear approximation.

quadratic/conic function and as a default option we used Gaussian
functions to specify the distribution of repulsive forces, based on
methods outlined in [8, p. 80]. Our application in Unity simpli-
fies the process of creating the potential function by allowing the
user to link the parameters for the potential function to the seman-
tic description of assets in the scene. The user can specify a list
of assets to act as obstacles/repulsive forces and the corresponding
JSON files are used to automatically calibrate the potential field,
with. To improve run-time speed, we also provide the option to
cache calculated paths for crowd agents. Furthermore, we imple-
mented the option of path compression, which can be used to re-
duce the number of waypoints. The algorithm follows two steps:

1. Find breakpoints on the x-axis corresponding to sections of
the path where velocity should be constant [7] using the R
strucchange package [29].

2. Specify a piecewise linear model which can be used to es-
timate the dependent variable at the breakpoints specified in
step 1, implemented using the R segmented package [19].

Figure 5 shows waypoints generated using the potential field
which have been compressed by a factor of 20. For clarity, we
show a path for a single crowd member in figure 6. We seman-
tically annotated static groups as obstacles (highlighted in purple)
for the potential field. The result is a “socially distanced” path.

Figure 6: A path generated using the potential field approach, cal-
ibrated using environment semantics. Two subsequent goal posi-
tions are used (bottom right and top left).

Figure 7: Multiple crowd agents using the same potential field, cal-
ibrated through environment semantics.

An example of a large-scale crowd is shown in figure 7. We note
that moving agents can also be semantically annotated as obstacles,
which automatically calibrates the potential field algorithm to be
updated in real time to account for dynamic obstacle avoidance.

Algorithm 1 Modified Gradient Descent for Path-generating

Input: A means to compute the gradient ∇U(q) at a point q ∈ R2.
α , a coefficient for the momentum term.
β , a coefficient for the goal attraction term.

Output: A sequence of points that make up the agent’s path
1: ~momentum← 0
2: q0← qstart
3: i← 0
4: t0← time
5: while time < maxTime and ε < ‖qi−qgoal‖ do
6: gradient←−∇U(qi)
7: vector to goal← goal−qi
8: momentum← α×momentum+(1−α)×gradient
9: vi← α×momentum+β × vectorToGoal + γ×gradient

10: qi← qi−1 + step size× vi
11: end while
12: return q0, ..., qi

3.3 Behaviour Triggers
Once crowd members have used the potential field to generate a
path to a destination, typically they should perform some action that
is triggered by a spatial cue. The semantics of this action should
be common to all crowd members but the implementation of how
each member executes the action can vary, especially for a hetero-
geneous crowd. We implemented this functionality in Unity by cre-
ating a prefab, which contains a collider to detect when a crowd



member is in the vicinity, a script that reads the semantic animation
related to the asset triggering the animation, and a script to iterate
through the animations listed in the crowd members animation con-
troller, playing the animation that matches the semantic description.
To use our implementation in practice, it is first necessary to set up
the crowd members animation controller, which is a state machine
with transitions between animations. The animation must be la-
beled semantically and the prefab should then be positioned in the
scene and linked with an existing asset. If this asset has a semantic
description for a linked animation in its corresponding JSON file
when a crowd member enters the collider, it will then trigger the
semantically matching animation. Otherwise, it will continue with
its previous behavior. This means that the behavior of crowd agents
depends on the scene semantics and can be modified by changing a
single parameter in the JSON configuration.

4 EXPERIMENT METHODOLOGY

A heuristic problem discovery experiment design was implemented
that focused on the use of the presented crowd simulation software
using the Unity cross-platform game engine. This approach ex-
plored the functionality, usability, and the overall user experience
of the tool in the first iteration of a user-centered design (UCD)
system development life-cycle (SDLC) [5, 20]. Therefore, focus
was specifically placed on the user to uncover and identify unique
end-user requirements. Both quantitative and qualitative user data
were collected to determine user-specific needs when using the tool.
A remote participation procedure was implemented due to the in-
feasibility of in-person participation due to COVID-19. Recruit-
ment took place in the Republic of Ireland and the United Kingdom
from October to November 2020. Unity experts were targeted via
advertisements posted to national game development groups and
forums. Potential participants were also invited via direct email.
Research information was provided that outlined the research mo-
tivations and procedures. After the respondents were processed,
participants were allocated a date and time to remotely undertake a
predefined crowd simulation process.

4.1 Participants
The number of required participants was calculated as between 5
to 10 persons; providing an estimated problem discovery rate of
85.55% - 94.69% [6]. In this way, the experiment design was
able to maintain a real-world use-case context and task complexity,
while also ensuring and controlling for the design novelty of the
proposed crowd simulation software [17]. A total of 6 male partic-
ipants were recruited (n = 6), with a mean age of 32 (SD = 7.4).
All members of the pool were educated to the European Qualifi-
cations Framework (EQF) level 7 (ordinary bachelors degree) or
above and were currently employed in the ISCO-08 employment
categories of Software and applications developers and analysts
(n = 3), Creative and performing artists (n = 1), Engineering pro-
fessionals (n = 1), and Information and communications technol-
ogy service managers (n = 1) with a mean experience of 8.2 years
(SD = 3.8). To determine the skill level of the participants and
identify user-types, each contributor was asked to describe on fully
labeled 5-point Likert scales their ability to use the Unity game en-
gine (M = 4.4, SD = 0.80), identify their familiarity (M = 2.20,
SD = 1.47) and expertise in creating crowd simulations in Unity
(M = 2.40, SD = 1.50). Therefore, the cohort identified themselves
as technically competent Unity users who were somewhat familiar
with creating crowd simulations in Unity.

4.2 Experiment Design
Participants were invited to remotely log into a project PC that was
connected to the university network using TeamViewer (a software
application for remote control, desktop sharing). For this purpose, a
Dell Alienware Aurora R8 was used: Intel® CoreTM i7-6700K CPU

(a) ”Metropolis” (b) ”Love and Fifty Megatons”

Figure 8: 3D Scenes

@4 GHz, 64GB RAM, 2 x GeForce RTX 2080 Super (Base clock:
1650 MHz, 8 Gb of GDDR6 Memory, and 3,072 CUDA cores),
running Windows 10 Pro (1904), and Unity version 2018.4.12f1
(LTS). An average internet provider speed of Up = 901.41 Mbps
(SD = 41.08), Down = 521.46 Mbps (SD = 11.35), and Ping = 1.6
ms (SD = 0.49) were measured at the PC before each session.

The study followed a two-step scenario testing strategy, with
seven individual tasks for participants to carry out per scene us-
ing our toolset. The first scenario involved creating a simulated
crowd scene, then re-targeting the crowd to a semantically similar
in the second. Two unique crowd simulation scenes were there-
fore created, each serving as a UCD problem discovery measure
for the new crowd simulation tools. This allowed a comparison of
re-targeting time between the two scenes. Users were provided task
descriptions for what should be achieved in each scene, along with
a brief video tutorial on how to use our tools in the Unity Editor, and
specific information on the result they should aim to achieve. The
opportunity to discuss and analyze these procedures with a project
researcher post-task ensured that the participants fully understood
how the tools worked and could, therefore, provide an informed
evaluation. Participants were allowed a 30-minute break between
the creation of each scenario.

4.3 Evaluation

On completion of the second scenario, participants filled out a Us-
ability Metric for User Experience (UMUX-Lite) questionnaire[16,
23] and the User Experience Questionnaire (UEQ)[11, 23], both
measured using 7-point Likert scales. The UMUX questionnaire
was targeted toward the ISO 9241 definition of usability (effective-
ness, efficiency, and satisfaction). The UEQ scales measured the
overall attractiveness of the crowd simulation tool as well as captur-
ing user experiences across both classical usability (pragmatic qual-
ities of efficiency, perspicuity, and dependability) and user experi-
ence (hedonistic qualities of originality and stimulation). For each
participant, interaction data were recorded during the scenario test-
ing as: Time on Task (ToT) for each step (calculated from the screen
recording data), keystrokes and mouse clicks, and the final results
achieved by each participant in the form of a Unity Scene file. Peri-
ods of prolonged inactivity were removed from the recorded times.
The final scene file, containing the newly developed crowd, was
saved to ensure consistency of quality between participants.

Table 1: UEQ results with Cronbach’s Alpha-Coefficient (α).

Scale Mean SD Confidence α*
Attractiveness 1.00 1.06 0.85 0.93
Perspicuity 0.83 0.93 0.74 0.66
Efficiency 0.79 0.87 0.70 0.66
Dependability 0.25 1.04 0.83 0.82
Stimulation 1.71 0.80 0.64 0.83
Novelty 0.79 1.11 0.89 0.67

*Note: an α reliability coefficient of 0.7 or higher is considered acceptable in most
scientific research conditions.



5 RESULTS

From ToT data, the average task completion time for both scenar-
ios was calculated as M = 02 : 40 : 35 (SD = 01 : 17 : 37). For
the first scenario, the average task completion time was 03 : 36 : 21
(SD = 01 : 07 : 48). For the second scenario, the average task com-
pletion time was 01 : 44 : 00 (SD = 00 : 32 : 57). Completing the
re-targeting task took on average 00 : 15 : 36 (SD = 00 : 10 : 19) less
time than the first. An average UMUX-Lite Score of M = 68.06
(SD = 11.20) was calculated using items 1 and 3 of the UMUX
questionnaire [15]. As a benchmark for data validation purposes, a
SUS comparison score of M = 67.14 (SD = 2.65) was also calcu-
lated. An average SUS score is reported as being 68 [22]; where a
SUS score above 68 would be considered above average and any-
thing below 68 is below average. The UEQ results for attractive-
ness, pragmatic quality, and hedonistic quality of the crowd simu-
lation tool can be seen in Table 1. The overall attractiveness of the
crowd simulation tool was measured as M = 1.00 (SD = 1.06). The
mean pragmatic qualities (M = 0.63) indicated that the practicality
and functionality of the tool, when applied in this context, could
achieve its intended goals. Hedonic qualities (M = 1.25) showed
that psychological and emotional experiences were fulfilling.

6 DISCUSSION

The following conclusions can be drawn from our UCD problem
discovery experiment. The individual stages of ToT measures re-
vealed problematic steps during each of the crowd simulation sce-
narios, where a long ToT time was indicative of problems with in-
teractions with the interface. In particular, the first four steps ap-
peared to present the participants with considerable trouble in sce-
nario 1; however, these problems appeared to have been novel and
were resolved when our users were undertaking re-targeting tasks.

When combined, both UMUX and UEQ post-task findings re-
veal insights on system effectiveness and the users’ experiences
when completing crowd simulation tasks in Unity. Overall, the
usability of the crowd simulation software was considered accept-
able, with a UMUX score of M = 68.06 (SD = 11.20) supporting
this claim. Furthermore, the initial analyses of the UEQ indicated
that the toolset was attractive to use (M = 1.00; SD = 1.06), with
positive evaluations for both hedonic (M = 0.63) and pragmatic
(M = 1.25) qualities. Unpacking these experiential qualities fur-
ther reveals underlying rationals behind the users’ experiences.

Pragmatic qualities of 0.63 indicate that the practicality and
functionality of the tool, when applied in this context, functioned
as intended. Furthermore, it was observed that the cohorts’ over-
all satisfaction with the tool was achieved, in that they were able
to sufficiently realize their personal goals. This also indicated that
the purpose of the tool was clear and they understood how to use it
effectively. The “efficiency” score (M = 0.79; SD = 0.87) reflected
well on the cognitive resources demanded when concerning the ac-
curacy and completeness of the goals achieved during the different
tasks. Furthermore, “perspicuity” generally rated highly (M = 0.83;
SD= 0.93), indicating that users felt that the crowd simulation soft-
ware was somewhat easy to become familiar with. This shows that
it was easy for the users to learn how to use the tool as a task based
methodology. In comparison, the measure for “dependability” was
rated relatively low (M = 0.25; SD= 1.04), indicating that the users
felt that they were not in control, that they felt insecure using the
tool, and that the system was perceptually unstable or behaved in an
unpredictable way. This was true for all participants as the Alpha-
Coefficient (α = 0.82) suggested consistent measures.

The hedonic qualities (M = 1.25) indicated that the psycho-
logical and emotional experiences of the users were fulfilling.
This score showed that the participants were enthusiastic and that
they enjoyed the overall experience. This also indicated that the
memories and previous experiences of the users were positively
evoked, signifying symbolic meaning drawn from previous encoun-

ters within Unity and their personal experiences of crowd simula-
tions. User ratings of “stimulation” (M = 1.71; SD = 0.80) showed
the extent to which the tool provided innovative and interesting
functions. The evaluation of ”Novelty” (M = 0.79; SD = 1.11)
also served to represent how innovative the cohort considered the
crowd simulation tool to be. Therefore, due to the “newness” of
the simulation tool, the novelty of the software was to be a com-
pounding factor for the initial ToT factors in scenario 1, one that
was diminished over time. Therefore, the novelty factor should be
considered as a constant, yet influential, factor for the appraisal of
crowd simulation software dependability.

To unpack the participants’ user experiences further, a follow up
email was sent to the participants to retrospectively explore issues
in relation to “dependability”. On the whole, participants felt that it
was sometimes unclear which script they should use and for which
purpose. Regarding obstacles, it was difficult to control the sim-
ulation as the moving characters chose to hug the predetermined
line rather than avoid barriers and hurdles. In this area, the users
indicated that although the basic implementation of patrolling was
easy to set up, they faced some issues with inconsistent prefabs. In
this, some character prefabs did not respond as expected. These
inconsistencies made the users feel that using the crowd simula-
tion prefab assets were somewhat unpredictable in use. Likewise,
participants reported difficulties with triggering animations when
characters walked beneath the mesh. Workaround methodologies
were discovered mid-task, but the participants felt that there was no
additional time to examine the assets or scripts in greater detail to
establish where the issue was being generated. as such, it was also
reported that the user interface was unintuitive and overly complex.
Additionally, way-point tracking was considered unpredictable and
felt particularly unreliable when a character was moving quickly.

To make the crowd simulation tool more predictable, the partic-
ipants identified specific areas for improvement. First, the toolkit
could be more cohesive by having a central toolbar as opposed to a
collection of various components. Secondly, it was suggested that
the crowd simulation tool could have added some components auto-
matically, as well as identifying the built-in Unity components that
were required for specific actions. Finally, participants expressed
that they would prefer to be able to set way-points manually and
have the character use a more standardized way to negotiate obsta-
cles without following a strict line and defining the magnetic repul-
sion zones as obstacles that should be negotiated. By allowing for
bespoke manipulation of the set way-points, it would be possible
to alter the navigation mesh dynamically. Other suggestions were
to standardize the prefab models, add visual indicators when a pre-
fab has triggered correctly (especially concerning the Y-axis), and
clearer, more intuitive naming for assets and imported animations
(route planner/route manager, static activity, etc.).

7 CONCLUSION

Previous research suggests that the use of environmental semantic
data is an area of research that has been neglected and in this con-
text, we provide a method for annotating a semantic environment
that is well-suited for use with AI modules with strictly defined
input parameters. We also present the design and initial implemen-
tation of a Unity-integrated system for crowd-retargeting which de-
pends on the use of environment semantics. We have demonstrated
the practicality of such a tool, where varying semantic parameters
modifies the aggregate behavior of the crowd. To support this, we
provide details of a UCD study to measure key metrics that will
guide subsequent developments in this area. Our users were able
to complete all tasks, indicating the viability of this toolset among
real-world practitioners. We anticipate that future approaches will
use data classifiers to determine the semantic parameters and recent
phenomena such as “social distancing” will be easily simulated us-
ing our novel re-targeting approach. The tools will be released as



an open-source repository once our findings have been integrated.
We also intend to follow up this work with a task analysis study to
evaluate individual parts of the system.

ACKNOWLEDGEMENTS

This publication has emanated from research conducted with the
financial support of Science Foundation Ireland (SFI) under Grant
Number 15/RP/2776 and the EU Horizon 2020 Programme under
Grant Agreement No. 780470.

REFERENCES

[1] H2020 sauce. https://www.sauceproject.eu/. Ac-
cessed: 2020-01-06.

[2] Massive. http://www.massivesoftware.com/. Ac-
cessed: 2020-01-06.

[3] Menge. http://gamma.cs.unc.edu/Menge/. Ac-
cessed: 2020-01-06.

[4] Miarmy software. http://www.basefount.com/
miarmy.html. Accessed: 2020-01-06.

[5] C. Abras, D. Maloney-Krichmar, J. Preece, et al. User-
centered design. Bainbridge, W. Encyclopedia of Human-
Computer Interaction. Thousand Oaks: Sage Publications,
37(4):445–456, 2004.

[6] R. Alroobaea and P. J. Mayhew. How many participants are
really enough for usability studies? In 2014 Science and In-
formation Conference, pages 48–56. IEEE, 2014.

[7] J. Bai and P. Perron. Computation and analysis of multiple
structural change models. Journal of Applied Econometrics,
18(1):1–22, 2003.

[8] H. M. Choset. Principles of Robot Motion: Theory, Algo-
rithms, and implementation. Cambridge, Mass: MIT Press,
2005.

[9] P. Dickinson, K. Gerling, K. Hicks, J. Murray, J. Shearer, and
J. Greenwood. Virtual reality crowd simulation: effects of
agent density on user experience and behaviour. Virtual Real-
ity, 23, 03 2019.

[10] J. Godoy, I. Karamouzas, S. J. Guy, and M. Gini. Adaptive
learning for multi-agent navigation. In Proceedings of the
2015 International Conference on Autonomous Agents and
Multi-Agent Systems, pages 1577–1585. International Foun-
dation for Autonomous Agents and Multi-Agent Systems,
2015.

[11] A. Hinderks, M. Schrepp, F. J. D. Mayo, M. J. Escalona, and
J. Thomaschewski. Developing a ux kpi based on the user
experience questionnaire. Computer Standards & Interfaces,
65:38–44, 2019.

[12] K. Ijaz, S. Sohail, and S. Hashish. A survey of latest ap-
proaches for crowd simulation and modeling using hybrid
techniques. In Proceedings of the 2015 17th UKSIM-AMSS
International Conference on Modelling and Simulation, UK-
SIM ’15, page 111–116, USA, 2015. IEEE Computer Society.

[13] H. Jiang, W. Xu, T. Mao, C. Li, S. Xia, and Z. Wang. A
semantic environment model for crowd simulation in multi-
layered complex environment. In Proceedings of the 16th
ACM Symposium on Virtual Reality Software and Technology,
VRST ’09, page 191–198, New York, NY, USA, 2009. Asso-
ciation for Computing Machinery.

[14] N. Kraayenbrink, J. Kessing, T. Tutenel, G. de Haan, F. Mar-
son, S. R. Musse, and R. Bidarra. Semantic crowds: Reusable
population for virtual worlds. Procedia Computer Science,
15:122 – 139, 2012. 4th International Conference on Games
and Virtual Worlds for Serious Applications.

[15] J. R. Lewis, B. S. Utesch, and D. E. Maher. Umux-lite: when
there’s no time for the In Proceedings of the SIGCHI Confer-
ence on Human Factors in Computing Systems, pages 2099–
2102, 2013.

[16] J. R. Lewis, B. S. Utesch, and D. E. Maher. Investigating
the correspondence between umux-lite and sus scores. In
Design, User Experience, and Usability: Design Discourse,
pages 204–211. Springer, 2015.

[17] R. Macefield. How to specify the participant group size for
usability studies: a practitioner’s guide. Journal of Usability
Studies, 5(1):34–45, 2009.

[18] F. Martinez-Gil, M. Lozano, and F. Fernández. Multi-agent
reinforcement learning for simulating pedestrian navigation.
In P. Vrancx, M. Knudson, and M. Grześ, editors, Adaptive
and Learning Agents, pages 54–69, Berlin, Heidelberg, 2012.
Springer Berlin Heidelberg.

[19] V. Muggeo. Segmented: Regression models with break-
points estimation. https://cran.r-project.org/
web/packages/segmented/. Accessed: 2020-01-14.

[20] D. A. Norman and S. W. Draper. User centered system design;
new perspectives on human-computer interaction. L. Erlbaum
Associates Inc., 1986.

[21] N. Pelechano, J. Allbeck, and N. Badler. Virtual Crowds:
Methods, Simulation, and Control (Synthesis Lectures on
Computer Graphics and Animation). Morgan and Claypool
Publishers, 2008.

[22] J. Sauro and J. R. Lewis. Quantifying the user experience:
Practical statistics for user research. Morgan Kaufmann,
2016.

[23] M. Schrepp, A. Hinderks, and J. Thomaschewski. Construc-
tion of a benchmark for the user experience questionnaire
(ueq). IJIMAI, 4(4):40–44, 2017.

[24] L. Torrey. Crowd simulation via multi-agent reinforcement
learning. In Proceedings of the Sixth AAAI Conference on
Artificial Intelligence and Interactive Digital Entertainment,
AIIDE’10, page 89–94. AAAI Press, 2010.

[25] A. Treuille, S. Cooper, and Z. Popović. Continuum crowds.
ACM Trans. Graph., 25(3):1160–1168, July 2006.

[26] J. Trottnow, W. Greenly, C. Shaw, S. Hudson, V. Helzle,
H. Vera, and D. Ring. Sauce: Asset libraries of the future. In
The Digital Production Symposium, DigiPro ’20, New York,
NY, USA, 2020. Association for Computing Machinery.

[27] H. Wang, J. Ondřej, and C. O’Sullivan. Trending paths: A
new semantic-level metric for comparing simulated and real
crowd data. IEEE Transactions on Visualization and Com-
puter Graphics, 23(5):1454–1464, 2017.

[28] J. Won, D. Gopinath, and J. Hodgins. A scalable approach to
control diverse behaviors for physically simulated characters.
ACM Trans. Graph., 39(4), July 2020.

[29] A. Zeileis. strucchange: Testing, monitoring, and dating
structural changes. https://cran.r-project.org/
web/packages/strucchange/. Accessed:2020-01-11.


