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ABSTRACT

The ability to render synthetic depth-of-field effects post capture
is a flagship application of light field imaging. However, it is
known that many existing light field refocusing methods suffer
from severe artefacts when applied to sparse light fields, known
as angular aliasing. We propose in this paper a method for high
quality sparse light field refocusing based on insights from depth-
based bokeh rendering techniques. We first provide an in-depth
analysis of the geometry of the defocus blur in light field refocus-
ing by analogy with the defocus geometry in a traditional camera
using the thin lens model. Based on this analysis, we propose a
filter for removing angular aliasing artefacts in light field refo-
cusing, which consists in modifying the well known shift-and-
sum algorithm to apply a depth-dependent blur to the light field
in between the shift and the sum operations. We show that our
method can achieve significant quality improvements compared
to existing approaches for a reasonable computational cost.

Index Terms— Light field imaging, refocusing, angular
aliasing, bokeh

1. INTRODUCTION

Light field imaging allows to capture all light rays passing
through a given amount of the 3D space [1,2], especially captur-
ing angular information which is lost in traditional 2D imaging
systems. We focus in this paper on the common two-plane pa-
rameterisation of light fields, in which the light field can be rep-
resented as a 4D function: Ω×Π→ R, (s, t, u, v)→ p(s, t, u, v),
where the plane Ω represents the spatial distribution of light rays,
also called the image plane, indexed by (u, v), while Π, the cam-
era plane, corresponds to their angular distribution indexed by
(s, t). In practice, the light field parameterised with two-parallel
planes consists in a regularly sampled 2D grid of 2D images. The
regular grid spacing on the camera plane is called the baseline,
denoted b, while the 2D images are named sub-aperture images
(SAI). We consider in this paper the variables s, t, u, v to be met-
ric, and define their corresponding scalar indices i, j, k, l, where
i, j are camera indices and k, l are pixel indices. For convenience,
we define L(i, j, k, l) , p(s, t, u, v) and we denote the SAIs by
Ii,j(k, l) , L(i, j, k, l).

Applications of light fields notably include rendering novel
images viewpoints [1, 3], estimating scene geometry in the form
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of disparity or depth maps [4–6], and synthetic depth-of-field
rendering or refocusing [7, 8]. In this paper, we focus on the
latter application, for which many methods have been proposed.
The shift-and-sum algorithm [7, 9] is a simple and a well known
method to produce refocused images from a light field, in which
the light field SAIs are first shifted towards the target focal plane
and then averaged. An extension of this concept to the Fourier
domain was later proposed in [10]. More advanced filters in the
4D Fourier domain have then been proposed to perform volumet-
ric refocusing [8]. More recently, the Fourier Disparity Layer
representation has been proposed [11], which allows rendering
and refocusing in real time by exploiting parallelisation capabil-
ities of modern GPUs.

However, the light field refocusing methods cited above ex-
hibit artefacts when applied to sparse light field inputs, known as
angular aliasing. The formal definition of densely (and by op-
position sparsely) sampled light fields is given in the study of
plenoptic sampling [12–14]. In [12], Chai et al. first provided
guidelines for dense light field sampling. By considering the dis-
parity between neighbouring SAIs, the condition for having a
densely sampled light field is that its disparity should not exceed
1. Such condition is difficult to respect in practice, and many ex-
isting light field datasets are not strictly dense, in particular when
captured with a gantry or a camera array. Therefore, multiple ap-
proaches have been developed to address angular aliasing in light
field refocusing. A direct approach consists in reconstructing a
dense light field from the sparse input before refocusing [15].
In order to avoid having to reconstruct a full dense light field or
perform any pre-processing of the light field, Xiao et al. [16] pro-
posed a method to detect angular aliasing using a statistical anal-
ysis of the refocused light field, and reduce the aliasing by using
lower resolution versions of the refocused image from a Gaus-
sian pyramid, which are then fused with Poisson image editing
techniques [17]. Wang at al. proposed to use depth-based bokeh
rendering methods (discussed below) in order to avoid angular
aliasing artefacts, which is also combined with super-resolution
of the in-focus region to render the final image [18]. A learning
based method was recently proposed in which the angular alias-
ing filtering is considered as a denoising problem solved with a
convolutional neural network [19].

Before light field refocusing, rendering synthetic bokeh has
been a long standing application in computer graphics [20–22].
By analysing the geometry of the defocus blur in traditional cam-
eras using the thin lens model, the radius of the circle of confu-
sion (CoC), can be expressed depending on the aperture radius,
the depth of the light point source, the depth of the focal plane,
and the lens focal length. Given an all-in-focus input image, its
corresponding depth map and the camera parameters, a synthetic
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Fig. 1: The light field two-parallel plane parameterisation, explicitly
defining the local and global parameterisation of the image plane.
Re-parameterising the global focal plane from ZF to Z′F induces a
shift of the local image planes, such that the relation of Eq. 1 always
holds.

bokeh image can be rendered by applying a depth-dependant blur
on the input image [20], where the blurring kernel is computed
from the CoC radius. Note that such method has mainly been ap-
plied to synthetic images for which corresponding ground truth
depth maps are known in order to simulate shallow depth-of-
field, and real-time solutions have been developed e.g. for ap-
plication in video games [23]. A well known method to speed up
synthetic depth-of-field image rendering is to use a blurred lower
resolution image from a Gaussian pyramid, called mipmap, for
large CoC radius [21]. This technique is more difficult to apply
to natural images, for which accurate depth maps are difficult to
obtain, and is in fact used as an application to demonstrate the
quality of estimated depth map in computer vision research [24],
or requires manual editing [25].

We propose in this paper to combine insights from depth-
based bokeh rendering methods with light field refocusing, in
particular to address angular aliasing artefacts for refocusing of
sparse light fields. We first provide in section 2 an in-depth analy-
sis of the geometry of the defocus blur in light field refocusing by
analogy with the defocus geometry in traditional cameras based
on the thin lens model. Thanks to this analysis we can derive
the angular aliasing conditions for light field refocusing based on
the light field disparity, which confirms results given in the study
of plenoptic sampling. Based on the previous study, and given
that accurate disparity maps can be estimated from light fields,
we propose in section 3 a novel refocusing method which can
be seen as an extension of depth-based bokeh rendering methods
applied to light fields. More precisely, the depth-based blurring
is distributed in between the light field SAIs, which allows to re-
duce angular aliasing artefacts. We show in section 4 that the
proposed approach can drastically improve the rendered image
quality compared to classical and more recent approaches when
applied to sparse light fields, for a reasonable computational cost.

2. TWO-PARALLEL PLANE LIGHT FIELD COC

We introduce in this section our analysis of the CoC of the re-
focused two-parallel plane light field. For this purpose we first

𝑉

𝑅𝐶

𝑍𝐹

𝑍𝑃

𝑅𝐶
𝑃

𝑅𝐴

𝑍𝐹

𝑍𝑃

𝒁

𝑣

𝑟𝐶

𝑓𝑓
𝑉

𝑡

𝑡𝑟

Fig. 2: Analysis of the CoC in light field refocusing. Note that the
global image plane is mirrored with respect to the camera plane for
clarity and by analogy with the defocus geometry in the thin lens
model. The refocus camera positioned at (sr, tr) is displayed in
purple.

need to define the parameterisation of the two-parallel plane light
field in detail.

2.1. Global and local image plane parameterisation

In this paper we make a distinction between a global focal
plane, which is generally considered the image plane in common
two-parallel plane parameterisation, and the local image planes,
which correspond to the local image coordinates of a light field
camera. Using this distinction, the position of the global focal
plane is defined as the distance where the light field camera frus-
tums coincide (see Fig. 1). We refer to this distance as the focal
distance denoted ZF . We denote the global focal plane coordi-
nates as U, V and the local image coordinates as u, v, and we
have the following relationship for all light field cameras:

u = Uf/ZF , v = V f/ZF (1)

where f is the focal length of the light field cameras. Note that
re-parameterising the global focal plane, i.e. changing the focal
distance, induces a shift of the local image planes with respect
to the optical axis, as shown in Fig. 1, such that the relation in
Eq. 1 always holds. This is unlike most definitions of the two-
parallel plane light field in existing papers, which implicitly as-
sume that all principal points are aligned with the camera optical
axis (which corresponds to a focal plane at infinity in our case).

In such configuration, the relationship between the depth of
a point P , denoted ZP , and the corresponding disparity dP be-
tween two neighbouring cameras can be expressed as:

ZP =
bfpx

dP + bfpx/ZF
(2)

where b is the light field baseline, and fpx is the focal length in
pixel, i.e. fpx = f/ε where ε is the pixel size in meter.

2.2. Light field circle of confusion

In this section we analyse the defocus blur in light field refocus-
ing, and provide a precise formula for the CoC radius based on



known light field parameters. As shown in Fig. 2, we study the
defocus geometry by analogy with the thin lens model, using the
parameterisation described in the previous section. The radius
of the CoC on the global focal plane RC can be easily obtained
depending on the aperture radius RA using similar triangles:

RC = RA
|ZF − ZP |

ZP
(3)

The CoC radius on the local image plane of the refocus cam-
era rC can then be obtained thanks to Eq. 1:

rC = RA
|ZF − ZP |

ZP

f

ZF
(4)

We emphasise that this result holds for any position of the tar-
get refocus camera (sr, tr) on the camera plane, thanks to the
precise parameterisation described in the previous section, as il-
lustrated on Fig. 2 where the refocus camera is shown in purple.
By dividing by the pixel size we get the CoC radius in pixel unit
ρC :

ρC =
RAfpx
ZF

|ZF − ZP |
ZP

(5)

which is similar (yet not equal) to the expression used in depth-
based bokeh rendering methods [20,21]. By substituting Eq. 2 in
the previous equation, we can express the CoC depending on the
disparity instead of depth, which reduces to:

ρC = ρA|dP − dF | (6)

with ρA , RA/b. Advantageously, this equation does not de-
pend on any of the metric parameters of the light field (focal
length, baseline, focal plane distance) but only the disparity,
which can be estimated from the light field SAIs directly. It is
also easier in practice to use the scalar aperture radius ρA which
corresponds to a number of cameras within the aperture, rather
than the metric radius RA.

From this analysis we can also observe that aliasing artefacts
will occur in the defocus bokeh if the CoC radius ρC becomes
larger than the aperture radius ρA, as there will not be enough
light field cameras in the aperture to cover the area within the
CoC (see Fig 3). Using Eq. 6 we can express this condition in
terms of the disparity only:

|dP − dF | > 1 (7)

As mentioned in the introduction, such condition is already
known from previous work on plenoptic sampling [12–14]. We
can see from Eq. 7 that to minimize the aliasing, the ideal place-
ment for the focal plane is dF = (dmax − dmin)/2, which is
also consistent with the results from the plenoptic sampling the-
ory. However, contrary to the plenoptic sampling theory which is
usually concerned with image-base rendering for all-in-focus im-
ages, by definition of the refocusing application dF is not fixed,
and thus prone to more severe angular aliasing.

In addition, we can also derive from Eq. 6 a condition on the
disparity corresponding to the in-focus region of the refocused
image, which occurs if the CoC radius is less than half a pixel,
which we can express as:
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Fig. 3: Geometry of the light field CoC on the image plane and
angular aliasing conditions. Top left: ray is in focus. Bottom left:
Defocus with natural bokeh. Right: defocus with angular aliasing.
The gray area inCρC correspond to parts of the bokeh not covered by
any light field ray. We compensate for the missing rays by blurring
known rays (in red) using kernels hdPi,j .

|dP − dF | ≤
1

2ρA
(8)

3. PROPOSED METHOD

Assuming that the light field is Lambertian, the core idea behind
the proposed anti-aliasing filter is to compensate for missing rays
in the aliased defocus bokeh, by blurring the known light field
rays such that they fill the gaps in the target aperture shape (rep-
resented in gray in Fig. 3). At a high level, our approach consists
in modifying the shift-and-sum algorithm by applying a dispar-
ity dependent blur to each SAI after the shift but before the sum
operation. While pre-filtering the light field has been proposed
in previous work, especially in the Fourier domain [8], our pro-
posed spatio-angular filter is the first that directly relates to the
shape of the circle of confusion.

As for the shift-and-sum, we first start by shifting all the SAIs
in the light field toward the target refocus disparity dF and the
target refocus position ir, jr:

IdFi,j (k, l) = Ii,j
(
k + (i− ir)dF , l + (j − jr)dF

)
, ∀i, j (9)

We then define for each light field camera position a disparity
dependent blur kernel hdi,j as:

hdi,j(k, l) =


CρC (k, l)/|CρC | if |k − i| ≤ |d− dF |

& |l − j| ≤ |d− dF |
0 otherwise

(10)

where d is the disparity value, CρC is the disk inscribed in the
CoC of radius ρC (computed using Eq. 6), and |CρC | is the area
of CρC used for normalisation. This normalisation factor simu-
lates the dispersion of light on the image sensor in the thin lens
defocus model.

The blurring is then applied on regions of the shifted SAIs
corresponding to disparity value lying outside of the in-focus dis-
parity range defined in Eq. 8:



In =

dend∑
d=dstart

∑
i,j

(IdFi,j × αd) ∗ hdi,j

Id =

dend∑
d=dstart

∑
i,j

αd ∗ hdi,j

(11)

where In and Id are numerator and denominator respectively,
used to avoid any pixel intensity overflow, αd is a binary mask
identifying pixels corresponding to the disparity value d, × rep-
resent the pixel-wise multiplication, and ∗ represents the con-
volution operator. We apply the blurring independently to the
background and the foreground, for which the disparity ranges
are defined as dstart = dmin, dend = −1/(2ρA) and dstart =
1/(2ρA), dend = dmax respectively. We thus obtain the numer-
ator and denominator Inb , I

d
b for the background and Inf , I

d
f for

the foreground.
We then generate an all-in-focus image at the target refocus

position Iir,jr . Note that if the position (ir, jr) does not cor-
respond to an existing light field camera position, Iir,jr can be
obtained with a view synthesis method, e.g. using disparity warp-
ing. We also generate the corresponding disparity map Dir,jr .

The final refocused image Ir is obtained by compositing the
blurred background, the all-in-focus image, and the blurred fore-
ground, following compositing rules from back to front:

Ir =
(Inb (1− αF ) + Iir,jrαF )(1− αf ) + Inf αf

(Idb (1− αF ) + 1)(1− αf ) + Idfαf
(12)

where αF is a mask identifying pixels corresponding to the in-
focus region, i.e. αF = |Dir,jr − dF | ≤ 1/(2ρA), and αf is
mask identifying pixels corresponding to the blurred foreground,
i.e. αf = Idf > 0. A more detailed summary of the proposed
algorithm is shown in Algorithm. 1.

Following fast depth-based bokeh rendering approaches [21],
we further propose to use a multi-scale approach to reduce com-
plexity, such that the size of the blurring kernels kdi,j is constant.
For each shifted SAI IdFi,j , a pyramid with n levels is created, with
a downscaling factor σ. The number of levels for the pyramid
can be determined depending on the maximum disparity range
as n = logσ(max(|dmin − dF |, |dmax − dF |). During the dis-
parity dependent blurring described in Eq. 11, for large blurring
kernel size, i.e. large d, the blurring can be applied on higher
level of the pyramid, which can thus be performed with a smaller
kernel. For a given disparity d, the adequate pyramid level l can
be computed as l = logσ(d), for which the disparity is reduced
to dσl and we can use the corresponding blurring kernel hdσ

l

i,j .
Note that some existing methods fully rely on such a multi-

scale approach to reduce the angular aliasing, i.e. use blurred
images from higher pyramid levels instead of applying a spatial
blur as proposed in this paper. However, the specific spatial blur-
ring kernels we propose are essentials to faithfully simulate the
target aperture shape, which can be lost when directly using the
blurred pyramid images, especially for light fields with low an-
gular resolution. Furthermore, while we represent circular aper-
ture in our figures for simplicity, our method can be used for any
target aperture shape.

Algorithm 1 Disparity-based light field bokeh rendering
1: procedure LFREFOCUS(L, dF , ρA, ir, jr)
2: Generate all-in-focus image at target position Iir,jr
3: Generate corresponding disparity map Dir,jr
4: dmin ← min(Dir,jr ), dmax ← max(Dir,jr )
5: Generate shifted light field LdF using Eq. 9 . Shift
6: Inb , I

d
b ← DISPBLUR(LdF , Dir,jr , dmin,

−1
2ρA

, ρA)

7: Inf , I
d
f ← DISPBLUR(LdF , Dir,jr ,

1
2ρA

, dmax, ρA)

8: αF ← |Dir,jr − dF | ≤ 1/(2ρA)
9: αf ← Idf > 0

10: Compute Irir,jr using Eq. 12 and return.

11: procedure DISPBLUR(L,D, dstart, dend, dF , ρA)
12: In ← 0, Id ← 0
13: d← dstart − dF
14: for d = dstart to dend do
15: ρC ← ρA|d− dF |
16: Compute hdi,j using Eq. 10
17: αd ← d ≤ |D − dF | ≤ d+ 1
18: Bi,j ← (Ii,j × αd) ∗ hi,j . Blur
19: αi,j ← αd ∗ hdi,j
20: In += Bi,j . Sum
21: In += αi,j

22: Return In, Id

4. EXPERIMENTS AND RESULTS

In this section, we compare our proposed approach, with the
multi-scale implementation (denoted as MS) and without, to the
shift-and-sum (SAS) algorithm [7], the Fourier Disparity Layer
(FDL) [11], the selective light field refocusing (SLFR) approach
of [18], and our multi-scale method applied to a single image,
which can be seen as a single image depth-based bokeh render-
ing (SIBR) similar to [21]. For the FDL and the SLFR we use the
Matlab implementation provided by the authors with the recom-
mended parameters. Note that the FDL is using the GPU capabil-
ities of Matlab. We implemented all the other methods ourselves
in C++, with parallelisation on CPU. In all experiments, our
multi-scale approach is used with a downscaling factor σ = 0.5
to create the SAI pyramids. The estimated disparity maps used
in our experiments were obtained with an approximate but fast
approach described in [5], for which is a C++ implementation is
provided by the authors.

4.1. Objective evaluation

In order to perform an objective evaluation, we generated refer-
ence refocused images using the shift-and-sum algorithm applied
on the full light field, and test sparse light fields are obtained by
subsampling the original light fields. The refocused images are
rendered for the center view, with a circular aperture with radius
ρA equal to half the camera array size, and the target focus dis-
parity dF = (dmax−dmin)/2. In this experiment we use 11 light
fields from the additional subset of the synthetic HCI benchmark
dataset [26] which have a resolution of 9 × 9 × 512 × 512, and
9 light fields from the Stanford gantry dataset [27] which have a
resolution of 17 × 17 × 1024 × 1024 (the spatial resolution can
vary). We use subsampling factors αs of 2, 3 and up to 4 for



Table 1: Average scores for the HCI dataset. Best and second
best scores are highlighted in bold and italic respectively. GT
indicate the use of the ground truth disparity maps.

PSNR / SSIM
Method αs = 2 αs = 4

SAS [7] 47.23 / 0.997 36.14 / 0.971
FDL [11] 40.12 / 0.977 33.81 / 0.940
SLFR [18] - GT x 36.14 / 0.985
SIBR [21] - GT 36.85 / 0.984 34.08 / 0.973
Ours - GT 42.64 / 0.995 39.84 / 0.991
Ours w/ MS - GT 41.85 / 0.994 37.93 / 0.988
SLFR x 35.03 / 0.975
SIBR 34.80 / 0.974 33.92 / 0.970
Ours 39.39 / 0.987 37.68 / 0.983
Ours w/ MS 39.06 / 0.986 36.76 / 0.983

the Stanford dataset. Note that by design the selective refocus-
ing approach of [18] only uses 3 × 3 SAIs from the input light
fields, which corresponds to the maximum subsampling factor.
Average PSNR and SSIM scrores are given for the two datasets
in Tables 1 and 2.

As ground truth disparity maps are available for the HCI
dataset, we provide in Table 1 results obtained with the ground
truth disparity (denoted GT) as well as estimated disparity for
comparison. While there is a clear decrease in performance for
all disparity dependant methods when using the estimated dispar-
ity maps compared to the ground truth, our proposed approach is
still outperforming all other methods for the sparsest input setting
(αS = 4). For αS = 2, our method using ground truth disparity
map is second best after the shift-and-sum algorithm, and second
best in terms of SSIM without ground truth disparity.

The experiment on the Stanford dataset confirms that our
proposed approach outperforms existing methods for sparse in-
put light fields, as shown in Table 2.

We can observe for both datasets that our multi-scale imple-
mentation suffers from a decrease in performance compared to
the single scale implementation, however we can see from the
average processing times reported in Table 3 that it can be ad-
vantageous in terms of computational complexity, especially for
the Stanford dataset which has a higher resolution. We can also
observe from Table 3 that while the proposed approach has an in-
creased complexity compared to the shift-and-sum algorithm, it
is faster than the single image depth-based bokeh rendering. The
FDL being computed on GPU is clearly the fastest method, and
we postulate that our approach could reach similar processing
time thanks to a GPU implementation.

4.2. Visual results

We apply the different test methods to light fields from the Tech-
nicolor dataset [28], captured with a camera array with a wide
baseline. In addition, the spatial resolution is also much higher
than for the test light fields used in the previous section, and thus
the disparity range of these light fields is around 50 pixels. This is
much larger than the disparity range of previous test light fields,
even subsampled, and thus more challenging.

We compare in this experiment our proposed multi-scale

Table 2: Average scores for the Stanford dataset. Best and
second best scores are highlighted in bold and italic.

PSNR / SSIM
Method αs = 2 αs = 4 αs = 8

SAS [7] 42.68 / 0.988 36.13 / 0.954 28.85 / 0.893
FDL [11] 42.40 /0.986 35.86 / 0.950 28.66 / 0.881
SLFR [18] x x 29.36 / 0.931
SIBR [21] 31.64 / 0.964 31.48 / 0.963 29.38 / 0.951
Ours 39.59 / 0.987 38.18 / 0.982 32.97 / 0.964
Ours w/ MS 39.31 / 0.986 35.01 / 0.977 31.20 / 0.961

Table 3: Processing time in seconds.

HCI Stanford
Method αs = 2 αs = 4 αs = 2 αs = 4 αs = 8

SAS [7] 0.08 0.05 0.80 0.34 0.20
FDL [11] 0.01 0.01 0.03 0.02 0.02
SLFR [18] x 10.79 x x 65.35
SIBR [21] 0.46 0.31 5.66 3.74 3.22
Ours 0.53 0.79 17.33 17.72 22.15
Ours w/ MS 0.36 0.21 3.99 1.58 0.85

SAS [7] ∼0.5s FDL [11] ∼0.1s

SLFR [18] ∼100s Ours - MS ∼1.5

Fig. 4: Visual results for a sparse light field captured with a camera
array [28] for the different test methods. The approximate average
processing time is shown next to each method.

approach to the shift-and-sum algorithm, the Fourier Disparity
Layer, and the selective light field refocusing approach. We show
results for the “Painter” light field in Fig. 4. While some arte-
facts can be observed in the refocused images obtained with our
method due to errors in the disparity maps, our approach clearly
provides better results than existing methods.

5. CONCLUSION

We proposed in this paper a novel refocusing method for sparse
light fields based on the in-depth analysis of circle of confusion
for the two-parallel plane parameterisation and borrowing insight
from depth-based bokeh rendering methods. We showed through
our results that our method can outperform classic refocusing al-
gorithms as well as more advanced methods proposed in recent
years.

However, our results also showed that the quality of our re-



sults depends on the quality of the disparity maps estimated from
the input light field. In future work, we are planning to investi-
gate variations of the proposed method robust to disparity estima-
tion errors, e.g. using more advanced alpha matting techniques
to blend the blurred background, foreground and all-in-focus im-
age.

In addition, the proposed approach can also be used for more
applications than just angular aliasing filtering, e.g. simulate
small apertures radius (ρA < 1) for sparse light fields, or very
large aperture for dense light fields. Our method could also be
extended to re-parameterised light fields for tilt-shift refocusing.
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