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ABSTRACT

Color mismatch in stereoscopic 3D (S3D) images can create visual

discomfort and affect the performance of S3D image processing al-

gorithms, e.g., for depth estimation. In this paper, we propose a new

deep learning-based solution for the problem of color mismatch cor-

rection. The proposed solution consists of a multi-task convolutional

neural network, where color correction is the primary task and cor-

respondence estimation is the secondary task. For the training and

evaluation of the proposed network, a new S3D image dataset with

color mismatch was created. Based on this dataset, experiments were

conducted showing the effectiveness of our solution.

Index Terms— Color mismatch, color correction, stereoscopic

3D, convolutional neural network

1. INTRODUCTION

Stereoscopic 3D images can contain color mismatch between the left

and right image due to reasons like different camera and lens charac-

teristics, different illumination and reflections resulting from differ-

ent camera orientations, polarized light, etc. The presence of color

mismatch can reduce the quality of experience and cause problems

when processing the S3D images [1]. For color mismatch correction,

there are already several traditional methods [2–9], but not so many

based on deep learning, which has already been successfully applied

in other computer vision problems. Therefore, here we propose an

effective solution based on a convolutional network.

Color correction of S3D images consists of selecting either the

left or right image as the reference image and correcting the other

image, which is called the target image. The reference image con-

tains the color information that must be mapped to the target image

while preserving the structure information, i.e., the edges, present in

the target image.

For color correction, there are two categories of approaches,

namely, global [2, 3] and local [4] methods. Global methods es-

timate a single color transformation, while local methods estimate

different local transformations. Global methods usually analyze the

color distributions of the reference and target images, but they fail

in the presence of local color mismatch. Local methods can fix lo-

cal color mismatch, but they are usually sensitive to the quality of

correspondence estimation between reference and target images.

In this paper, we propose a multi-task deep learning-based solu-

tion that is essentially a local approach capable of fixing local color

mismatch and that is also trained to estimate correspondences in the
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presence of color mismatch. In this way, this multi-task solution tries

to improve correspondence estimation and reduce the negative effect

of inaccuracies in this secondary task.

For the correspondence estimation, we use the so-called parallax-

attention mechanism (PAM) [10]. PAM is a non-local network that

estimates correspondences along horizontal epipolar lines, assuming

that the input images are rectified. In our case, PAM is trained in

an unsupervised manner due to the lack of ground truth correspon-

dences.

The main contribution of this paper is a convolutional neural

network (CNN) for color mismatch correction. We also created a

dataset with undistorted and distorted S3D images necessary for the

training of the network. Moreover, using this dataset, we conducted

experiments for the optimization of the network and its evaluation.

The code and dataset are publicly available1.

2. RELATED WORK

In computer vision and multi-view video processing communi-

ties, the color mismatch problem is generally solved using either

global [2, 3] or local [4] approaches. The global approaches include

exposure compensation (or gain compensation) [2] or use 3D lookup

tables [3]. However, they may fail in the case of local differences.

Local approaches do not explicitly compensate for the image as a

whole, and they can focus on correcting the image region by region

using local feature correspondences [4].

New studies attempt to combine global and local approaches [5,

6]. They generally first focus on a global color correction to rectify

the color values and bring them as close to the reference as possi-

ble. Afterward, the local color correction is handled in a region-

based approach using optical flow estimation. More recently, a deep

learning-based method [11] was proposed, which is based on a rela-

tively simple CNN and uses per-pixel and perceptual losses.

The image processing and computer graphics communities have

developed similar color manipulation methods, called color transfer

techniques. These methods transfer the color feel from a palette im-

age to a target image, and they assume that the contents of the two

images are different. The earliest work in this area was by Rein-

hard et al. [12], who proposed transforming the mean and standard

deviation of each color channel in the target image to match that of

the palette image. Since then, more complex techniques have been

used to model the color distributions of the images more accurately,

including histograms and Gaussian mixture models [13, 14]. While

global color transfer functions are often used, including affine, ra-

dial basis and optimal transport functions [15, 16], local techniques

1https://v-sense.scss.tcd.ie/research/

color-mismatch-correction/
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Fig. 1: Illustration of the proposed solution for color mismatch correction.

have also been proposed to allow for more flexibility in the recolor-

ing [17,18]. An efficient method was developed by Pitie et al. [7]. It

first estimates a global color function that converts the color distribu-

tion of one image into another, and then it reduces possible grain arti-

facts generated by the color function. Recently, Grogan et al. [9] pro-

posed a color transfer technique that could also be enhanced to take

into account color correspondences between the target and palette

images, ensuring the method could be used to color correct images

of the same scene.

In our multi-task solution, we use the parallax-attention mecha-

nism (PAM) for the correspondence estimation. This component has

already been successfully used in other methods for disparity esti-

mation [10], S3D image super-resolution [10, 19], binocular image

dehazing [20], light field reconstruction [21], and object pose esti-

mation [22]. Differently from the other methods, we apply PAM to

S3D images with color mismatch and we show that it works also in

this condition.

3. PROPOSED METHOD

The proposed color correction method takes as input an S3D image

consisting of a reference image Iref and a target image Itarg that are

rectified. The target image is the image that needs to be color cor-

rected based on the colors of the reference image. The proposed

color mismatch correction method is based on a CNN that has three

main components as illustrated in Figure 1: feature extraction, PAM,

and color correction.

3.1. Feature Extraction

The feature extraction component extracts the features A and B nec-

essary for the color correction from the target image Itarg and the

reference image Iref , respectively. This component consists of a 3×3

convolution layer followed by a sequence of eighteen residual blocks

(see Figure 3). The number of channels of the feature maps is kept

constant through the entire CNN equal to 64.

3.2. Parallax-Attention Mechanism

The second component is the parallax-attention mechanism (PAM)

[10] that estimates correspondences along horizontal epipolar lines.

It also computes an occlusion map, and it warps the features of the

reference image into the target image.

PAM is illustrated in Figure 2. The inputs of PAM are the fea-

ture maps A,B ∈ R
H×W×C (H is height, W is width, and C are

the channels) from the previous component, corresponding to the

features extracted from the target image Itarg and the reference im-

age Iref , respectively. In the beginning, there are two residual blocks

with shared weights that adapt the input features for the estimation

of the correspondences and that generate the feature maps A0 and

Fig. 2: Parallax-attention mechanism.

B0. This is important since different tasks require different features,

otherwise, the proposed multi-task solution would suffer from train-

ing conflicts [23]. Then, a 1×1 convolution layer converts A0 into

a feature map Q ∈ R
H×W×C , and another 1×1 convolution layer

converts B0 into a feature map K ∈ R
H×W×C that is reshaped to

R
H×C×W . Q and K are multiplied and softmax is applied obtaining

a parallax attention map MB→A ∈ R
H×W×W . MB→A can be seen

as a cost matrix that encodes the correspondences along horizontal

epipolar lines. In the next step, B is processed by a 1×1 convolution

layer obtaining R ∈ R
H×W×C , which is multiplied by MB→A to

generate D ∈ R
H×W×C . D can be interpreted as the warping of B

into A. PAM also estimates the occlusion map OA→B. For the oc-

clusion map, a second parallax attention map MA→B is estimated by

exchanging A and B. Refer to [10] for the details of the occlusion

map computation.

3.3. Color Correction

The color correction component takes as input the features A of the

target image, the warped features D of the reference image together

with the occlusion map OA→B, and it computes the color corrected

target image. First, A, D, and OA→B are concatenated and the re-

sulting features are fused by a 1×1 convolution layer. The fused

features are then processed by a sequence of six residual blocks (see

Figure 3) followed by two 3×3 convolution layers.

3.4. Losses

The multi-task CNN is trained for color correction in a supervised

manner, and for correspondence estimation in an unsupervised way.

For these tasks, we proposed to use two losses, namely, the color

correction loss LCC and the PAM correspondence estimation loss

LPAM . The overall loss L consists of the following weighted sum:

L = LCC + 0.005 LPAM . (1)



The color correction loss LCC evaluates how different the color

corrected target image I′targ is from the ground truth target image

IGT
targ. For this loss, we decided to use a combination of pixel-based

and perceptual losses. More precisely, we propose the sum of the

mean absolute error (MAE), the mean squared error (MSE), and the

negative of the structural similarity index measure (SSIM) [24]:

LCC =
1

N

∑

p

‖I
′

targ(p)− I
GT
targ(p)‖1+

1

N

∑

p

‖I
′

targ(p)− I
GT
targ(p)‖

2

2

− SSIM(I′targ, I
GT
targ), (2)

where p are the pixels, and N is their number.

As proposed in [10], for the correspondence estimation loss

LPAM , we use the sum of three losses: the photometric loss Lpm,

the smoothness loss Lsmooth, and the cycle loss Lcycle:

LPAM = Lpm + Lsmooth + Lcycle. (3)

No ground-truth correspondences are used in these losses since PAM

is trained in an unsupervised manner. The photometric loss Lpm

computes the difference between the warped reference and target

image and between the warped target and reference image. The

smoothness loss Lsmooth is applied for the correct handling of tex-

tureless regions when computing the correspondences. The cycle

loss Lcycle is introduced to achieve cycle consistency.

4. EXPERIMENTS

4.1. Dataset

For the training and evaluation of the proposed CNN, we took

S3D images with very low color mismatch and we introduced

color distortions. The S3D images were taken from three datasets:

Flickr1024 [25], InStereo2K [26], and the IVY LAB Stereoscopic

3D image database [27].

In order to exclude images with repetitive content and with large

color mismatch, the S3D images were manually checked for repeti-

tion and analyzed automatically for color mismatch with the method

proposed by Croci et al. [28]. In the end, we obtained 1035 undis-

torted S3D images.

In order to introduce color mismatch in the undistorted S3D im-

ages, we used the same approach of [11, 29]. More precisely, we

modified the target images by applying the following six color mod-

ification operators found in Photoshop 2021 with different intensity

levels: brightness (-90, -60, -30, 30, 60, 90), color balance (-90, -60,

-30, 30, 60, 90), contrast (-60, -40, -20, 20, 40, 60), exposure (-3, -2,

-1, 1, 2, 3), hue (-60, -40, -20, 20, 40, 60), saturation (-40, -20, 20,

40, 60). In the end, we obtained 36225 distorted S3D images. The

final dataset consists of a total of 37260 undistorted and distorted

S3D images. Both types of S3D images were used for the training

and evaluation. 80% of the dataset was randomly selected for the

training set, 10% for the validation set, and another 10% for the test

set.

4.2. Training Procedure

During the training, random patches were extracted from the input

images. As data augmentation strategy, we applied random vertical

and horizontal flipping. Furthermore, we used the Adam optimizer

with learning rate equal to 0.0001 and batch size equal to eight. The

neural network was implemented with Pytorch.

4.3. Color Correction Quality Metrics

For the evaluation of the results, two different full-reference quality

metrics were applied between the corrected and ground truth target

images. The first quality metric ∆Ê∗

ab [30] is the mean of the color

differences between corresponding pixels defined as follows:

∆E
∗

ab =
√

(L∗

2
− L∗

1
)2 + (a∗

2
− a∗

1
)2 + (b∗

2
− b∗

1
)2, (4)

where (L∗

1, a
∗

1, b
∗

1) and (L∗

2, a
∗

2, b
∗

2) are pixel colors defined in the

CIELAB color space. ∆Ê∗

ab was chosen because it is based on a

perceptually uniform color space. The second quality metric is the

structural similarity index measure (SSIM) [24]. ∆Ê∗

ab is an indi-

cator for the correctness of the color information, while SSIM is an

indicator for the structure information.

4.4. Hyperparameter Optimization and Ablation Study

For the hyperparameter optimization, we selected a baseline model

(BM) that is an instance of the proposed solution, and we modi-

fied its components in order to find the optimal solution. BM corre-

sponds to our model with six residual blocks in the feature extraction

component, and two residual blocks in the color correction compo-

nent. The residual block type used in BM is ResBOne shown in Fig-

ure 3a. BM and its variations were trained for 50 epochs. First, we

tried a different residual block type with batch normalization called

ResBTwo shown in Figure 3b. Then, we tried different numbers of

residual blocks in the feature extraction and correction components.

The best overall loss L and color correction loss LCC computed on

the validation set are shown in Table 1. According to the table, we

selected the optimal model with the residual block type ResBOne,

eighteen residual blocks in the feature extraction component, and six

residual blocks in the color correction component. We then trained

this model for 100 epochs.

In the ablation study, we analyzed the contribution of PAM. For

this study, we replaced PAM with a component that warps the ref-

erence image features based on correspondences obtained by SIFT-

Flow [31], which is an optical flow estimation method robust to color

mismatch. We trained this CNN without PAM for 50 epochs and

we obtained the best LCC computed on the validation set equal to

-0.9109. This is larger than the value obtained with the CNN with

PAM, and it shows the important contribution of PAM in our solu-

tion.

(a) ResBOne (b) ResBTwo

Fig. 3: Residual blocks.
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Fig. 4: Difference of the metric scores of the corrected and distorted target images for each distortion. The labels of the horizontal axis refer

to the different distortions with their intensity levels. undist corresponds to the undistorted images.

Table 1: Hyperparameter optimization.

Feat. Extr. Col. Corr. L LCC

6 ResBOne 2 ResBOne -0.9577 -0.9584

6 ResBTwo 2 ResBTwo -0.9460 -0.9468

12 ResBOne 2 ResBOne -0.9594 -0.9601

6 ResBOne 4 ResBOne -0.9626 -0.9633

12 ResBOne 4 ResBOne -0.9645 -0.9652

18 ResBOne 4 ResBOne -0.9647 -0.9654

12 ResBOne 6 ResBOne -0.9659 -0.9666

18 ResBOne 6 ResBOne -0.9665 -0.9672

4.5. Distortion-based Evaluation

The proposed method was applied to each distortion separately, and

for each of them, Figure 4 shows the difference between the metric

scores of the corrected and distorted target images. Our solution is

able to improve the S3D images for almost all distortions, except

for a few of them where small changes are introduced. This can be

explained by the inaccuracy of the correspondence estimation.

4.6. Comparison Study

The proposed method was compared with Dudek et al.’s local ap-

proach [5], and the global approaches of Grogan et al. [9], Pitie et

al. [7], and Reinhard et al. [12]. We did not compare against the most

recent deep learning-based method [11] as neither code nor data are

available. As can be seen from Table 2 showing the method scores,

our method has a better performance than the other four methods.

Figure 5 shows a target image distorted with the hue operator with

intensity +60, and its corrections with our and Pitie’s method. Also

in this figure, it is possible to see how our method generates better

results.

Table 2: Comparison of color correction methods.

Method ∆Ê∗

ab SSIM

Dudek et al. [5] 6.4982 0.9366

Grogan et al. [9] 5.6269 0.9476

Pitie et al. [7] 5.8105 0.9350

Reinhard et al. [12] 13.4496 0.8247

Ours 3.3084 0.9791

(a) Distorted target image. (b) Undistorted target image.

(c) Pitie et al. [7]. (d) Ours.

Fig. 5: Visual results.

5. CONCLUSION

We proposed a new deep learning-based color correction solution

based on multi-task learning, where the primary and secondary

tasks are color correction and correspondence estimation, respec-

tively. We created a new dataset for the training and evaluation,

and we conducted studies showing the effectiveness of the proposed

solution.

In the future, we plan to improve the dataset in order to have

undistorted S3D images with almost absent color mismatch by using

photorealistic computer-generated images or 2D-to-3D converted

images. Another goal is to investigate different feature extraction

and color correction components in order to improve the color

correction performance. We are also considering improving the cor-

respondence estimation by training PAM with supervised learning

based on ground-truth correspondences.
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