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Abstract

One of the challenges facing creators of virtual reality (VR) film is that viewers can choose to view the
omnidirectional video content in any direction. Content creators do not have the same level of control on
viewers’ visual attention as they would on traditional media. This can be alleviated by estimating the visual
attention during the creative process using a saliency model, which can provide a probability as to what
would draw a viewer’s eye. In this study, we analyse both the efficacy of omnidirectional video saliency
estimation for creative processes and the potential utility of saliency methods for directors. For this, we
use a convolutional neural network-based video saliency model for omnidirectional video. To assist the
directors in viewer guidance, we propose a metric that provides a measure of saliency estimation in the
intended viewport. We also evaluate the selected saliency model, AVS360, by comparing the output of this
saliency model to the actual viewing direction. The results show that the selected saliency model can predict
the viewers’ visual attention well and the proposed metric can provide useful feedback for content creators
regarding possible distractions in the scene.
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1 Introduction

Virtual reality (VR) film, also known as cinematic VR, is a form of VR entertainment that utilises among other
formats omnidirectional (also known as 360-degree) video. Visual language in VR is still in development, and
currently, the techniques used to relate a narrative to viewers in the form are derived from those of traditional
cinema [1]. As the viewer has the freedom to look in any direction of the 360-degree environment that they
are present in within the format [2], the director of the content must ensure that the narrative is observed as
intended by the viewer and to do so in an immersive manner [3].

One method in which to obtain a probability of how a viewer may view a scene is through the use of
computational saliency. Saliency models have been developed to evaluate what attracts the human eye within
visual scenes [4]. From psychological studies, it is said that bottom-up and top-down processes take place.
Bottom-up being the initial attraction based on the physical properties of the image, then the top-down process
begins which relates to the task the viewer has while observing the image [5]. These computational models
have also been adapted for use within 360-degree video [6].

Using saliency models to estimate the visual attention for a VR film could help the content creator to
attract viewers’ attention to areas which they deem important to the understanding of the narrative and gain
an understanding of other competing salient areas. To allow this, the saliency models can be integrated into
post-production environments, as can be seen in Fig. 1.
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Figure 1: Mock up of a saliency estimator in a post-production environment. The director’s cut and corre-
sponding viewport are visible on the RGB image from the film frame and the saliency estimate. The saliency
estimate shows that the director’s cut viewport is salient, but there is also a region that could compete for
viewers’ attention. Use of saliency estimation algorithms allows for intervention during post-production.

This paper investigates the effectiveness of using a saliency model in post-production environments, aiming
to assist the directors in viewer guidance. With this aim, we build a new metric (i.e., viewport-based saliency
ratio - VPSR) that can help directors in concentrating the viewers’ visual attention and optimising the VR film in
the post-production. The proposed VPSR metric can be used with different 360-degree video saliency models.
To validate the proposed VPSR metric, we used an omnidirectional video saliency model, i.e., AVS360 [6]
developed in our research group for saliency prediction in ODVs (omnidirectional video), and computed the
saliency on a VR film database with viewers’ visual attention and annotations of director’s intended viewing
areas, i.e., Director’s Cut database [7]. To find out the answer to “How successful is the selected saliency model
in predicting the points that attract visual attention?”, we first measure the saliency model’s output for all the
frames of the omnidirectional video. For different contents, the results are then compared to ground truth visual
attention to see how well the saliency prediction model performed. Secondly, to answer “How successful is
VPSR in finding frames that need attention?”, we report the frame-wise results for the proposed viewport-based
saliency ratio metric, and we measure how well the director’s preferred viewport area is related to the points of
saliency within the frame as predicted by the model. Given that AVS360 predicts viewers’ attention with high
accuracy, the results show the VPSR metric can identify the frames of the video that needs further attention.
Our investigation concludes that the use of the proposed metric on saliency estimation methods can identify
cases where attention guidance may fail, which can be useful for directors to take appropriate action.

2 Related Work

Among the techniques used by filmmakers in order to communicate their message to the audience are cine-
matography, mise-en-scene, sound, and editing [8]. In addition to this, various other methods of guiding the
viewer within a VR film have been explored. Investigating the methods for guidance, Speicher et al. [9] found
that giving the viewer an object to follow performed best. Editing from cinematic VR has also formed an area
of research [10]. A comprehensive review of papers that have investigated guidance within VR and augmented
reality systems can been found in [11].

In order to investigate the ability of techniques derived from traditional cinema within a 360-degree envi-
ronment, Knorr et al. [7] developed a database which included the creator’s intended viewing direction at all
times throughout the film. This intended viewing direction was given the title of the “Director’s Cut” (DC),
and this point and corresponding viewport are named as “DC point” and “DC viewport” throughout this paper.
These intended viewing directions were then compared to actual viewing directions of 20 participants to see
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Figure 2: Visualisation of the (a) viewport, (b) weight map, (c) whole saliency map for “Luther” video -
Frame #4096 with overimposed viewport, and (d) thresholded saliency map of the same frame for p = 50 with
overimposed viewport. Please refer to Eqn. 4 for the computation of the VPSR metric.

how viewers consume VR films and how it relates to directors’ intentions. Further studies analysed certain
elements of the devices used within the films in order to attract the viewers’ attention [12] and the styles of
cuts, where one scene transitions to another, and their effects on viewer behaviour within the films [13].

To anticipate the user behaviour and estimate viewers’ visual attention, saliency estimation methods are
developed in image processing and computer vision communities [14]. Due to their spherical nature, omnidi-
rectional images and videos used in immersive systems and VR film are expected to have a different interaction
paradigm compared to traditional images and video. How people consume omnidirectional images [15] and
video [16] has been explored in the past. Many saliency estimation methods have been developed in the last
20 years [14]; however, more recent advances in the field have been made due to machine learning [17]. An
example as to how these models have been used in omnidirectional images can be found in the work of Mon-
roy et al. [18] referred to as SalNet360, where the spherical coordinates of the pixels are taken into account.
AVS360 [6] which is the saliency model used in this study is a more recent model that caters for omnidirec-
tional video. This model built on work completed in [19]. Development in this area has also included using
audio information [20].

To investigate the use of saliency in VR films, we examined the relationship between the SalNet360 saliency
estimator and the viewer fixation points at plot points in our previous study [21]. In this earlier study, we
focused on plot points in particular and discussed the results for the selected frames. In this paper, differently
than in [21], we use AVS360, and we aim to focus on developing a tool that could be used by directors and
content creators to identify regions in the scene that could distract viewers from intended viewing areas. To the
best of our knowledge, this is the first metric of its kind that will inform directors and content creators.

3 Proposed Metric

In this paper, we propose a new metric named viewport-based saliency ratio (VPSR) to address the need for a
tool that allows directors to optimise their cinematic VR content during post-production. The main goal for this
metric is to provide a score to describe the ratio of total probability of estimated saliency within the director’s
intended viewport. The secondary goal for this metric is to warn the director for possible distractions in the
scene that can cause loss of viewers’ attention. These distractions then can be avoided using, e.g., virtual effects
during post-production.

For our VPSR metric, we firstly create a viewport area around the DC point in each frame, which corre-
sponds to the viewport area of the HMD (Head Mounted Display) used in the database study (i.e., an Oculus
Rift CV1 headset). Following this, a viewport-based saliency ratio is calculated as follows:

Zu,veQ S(u, v)W(u, v)
le;/lzl Z],y:l S(u, vYW(u, v)

VPSR(S,Q) = (D

where u and v are the horizontal and vertical pixel locations of an omnidirectional frame of M x N spatial
resolution, Q is the viewport area as described above (see Fig. 2.(a)), S(u, v) is the saliency map value at (u, v)
location, and W is the spherical weighting map. In equirectangular projection, the originally spherical content
is increasingly distorted (stretched) along the vertical direction, as we know from geographical maps. The



Viewport on RGB Frame Viewport on Saliency Fixations on Saliency

(a) “Jaunt” - Frame #3680 - VPSR: 0.677 - VPSR50: 0.909

_-

(b) “Luther” - Frame #4690 - VPSR: 0.216 - VPSR5p: 0.060

(c) “Jaunt” - Frame #0848 - VPSR: 0.018 - VPSR5g: 0

Figure 3: Visualisation of viewers’ fixations and viewport corresponding to director’s intention from the Direc-
tor’s Cut database [7]. From left to right, (left) the RGB film frame with DC point (red circle) and corresponding
viewport (white overlay), (middle) saliency map with DC point (red circle) and corresponding viewport (white
overlay), and (right) saliency map with fixation locations (red circles) for two video contents: (a,c) “Jaunt” and
(b) “Luther”.

weight map W counters this effect by accounting for spherical distortions, and it gives all parts of the image
appropriate contribution to the metric. Here we use the same map as WS-PSNR [22] model, see Fig. 2.(b).

Looking at the distributions of the saliency values with the viewport in Fig. 2.(c) and the fixation distribu-
tions in Fig. 3, we notice that the lower saliency values might not attract a lot of viewer fixation. Therefore,
we try to generalize the VPSR metric using the saliency values with highest probability. For this, we first com-
pute the histogram of the saliency map S and divide the saliency values into B different bins of /;(S), where
i € [1, B]. Then, taking the highest probability values into account first, we consider the p% of the total saliency
and find a threshold value 1 for this p as follows:

B
Y () - % Y hi(S) )
i=T i=1

Tp= argimn

where B is taken as B = 256 for this study. Afterward, using this threshold value, we compute the corresponding
thresholded saliency map S, as follows (see Fig. 2.(d)):

S(w,v), if S(u,v) =71

Sp(u, v) 2{ 3)

0, if S(u,v) <7)p

This ensures that we always start considering the high probability values. In the last step, we compute VPSR,

as below:
Zu,vEQ Sp(u» vYW(u, v)

M SN Sy, v)W(w,v)

where S, (u, v) is the thresholded saliency map value at (1, v) location. We can notice that Sygo = S, and Eqn. 4
is the more generic version of Eqn. 1, i.e., VPSR;99 =VPSR.

VPSR, (S,Q) = “



The proposed VPSR metric measures how well the DC viewport captures the estimated saliency compared
to the whole saliency map. The metric is bounded between [0, 1], where O means no saliency values are under
the viewport and 1 means all are under the viewport. Sample VPSR and VPSRg( results are given in the
captions of Fig. 3.

4 Experiments

Here, we describe the dataset used to analyse the efficacy of omnidirectional video saliency estimation for
creative processes, the selected saliency estimation method, i.e., AVS360 [6], and the evaluation metrics used.

4.1 Dataset

In this paper, we use the Director’s Cut database [7] to analyse how viewers’ fixations relate to the estimated
omnidirectional video saliency. This database contains a number of cinematic VR films and includes details
from the creators as to where they intended to direct the attention of viewers. For this, creators provided
their preferred viewport area throughout the films, using the Tracker in the commercial compositing software
Nuke' from The Foundry. The centre of this viewport (i.e., “DC point”) is recorded as U and V coordinates,
horizontally and vertically. The actual viewing directions were then collected from 20 viewers as they watched
the films in a natural manner, by collecting the centre point of viewers’ viewports [23]. Further details on this
technical process can be read in [7]. Fig. 3 visualises the RGB frames, viewers’ fixations, and the estimated
saliency maps for three different frames. The first column shows the director’s intended viewport overlayed on
the RGB frame, the second column shows the director’s intended viewport overlayed on the estimated saliency
map, and the third column shows participants’ fixation points plotted over the saliency map.

For our analysis, we selected four of the films from the Director’s Cut database: “DB”, “Jaunt”, “Luther”,
and “Vaude”. These films had the greatest amount of details as provided by the films’ creators, and they also
had a range of different lighting and guiding devices used within them.

4.2 Saliency estimation method

To investigate the use of omnidirectional video saliency on VR films and creative processes, we selected the
AVS360 model [6] as one of the recent saliency models, the implementation of which is publicly available. This
model is composed of two 3D residual networks (ResNets) to encode visual and audio cues. The first one is
embedded with a spherical representation technique to extract 360° visual features, and the second one extracts
the features of audio using the log mel-spectrogram. While this can take spatial audio into account, the DC
database was created with videos using mono sound. The AVS360 model was used as is, without any retraining
on the DC database. Interested readers are referred to the original paper [6] for further training details.

4.3 Evaluation metrics

To evaluate how well the AVS360 model predicts the regions that attract visual attention, we use two saliency
evaluation metrics: area under curve (AUC) and normalized scanpath saliency (NSS). Both AUC and NSS are
location-based metrics, and they are computed using the ground truth fixation points and estimated saliency
map. To compute AUC, the evaluation task was reframed as classification task and the area under the receiver
operating characteristic (ROC) curve is computed by finding the true positive and false positive rates. NSS on
the other hand first normalises the saliency map (i.e., saliency map is shifted to a mean of zero with standard
deviation of one) and estimates the average of the normalised saliency. Additional detail on the metrics used can
be found in [24]. To compute these metrics, we used open source implementations for NSS? and AUC? [25].

1 https://www.foundry.com/products/nuke
2https://sites. google.com/site/saliencyevaluation/evaluation-measures
3 http://www.saliencytoolbox.net/
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Figure 4: Frame-wise evaluation of the relationship between saliency estimation and directors’ intention for
each video in terms of VPSR.

S5 Analysis and Discussion

5.1 Validating the use of AVS360

We first analyse how well AVS360 predicts the ground truth viewing directions. For this, the AUC and NSS
metrics are calculated, and the mean AUC and NSS metric results are reported in Table 1.

As we can see from Table 1, both AUC and NSS values support the hypothesis that the selected saliency
estimation method, AVS360, can predict the fixation locations well. The AUC score is defined in the range of
[0,1], and a high AUC score (e.g., 0.8594 as in Table 1) indicates that the estimated saliency map predicts the
distribution of the fixations well. The NSS score shows how large the saliency values correspond to the fixation
locations, and having NSS scores ~ 2.5691 means that the saliency values corresponding to fixation locations
are 2.50 away from the mean of the saliency map. That is, the estimated saliency map yields high values at
fixation locations. Both of these observations show that the AVS360 model can predict salient regions well.
Furthermore, AVS360 can identify locations that might divert visual attention.

5.2 Frame-wise VPSR results

The generic VPSR metric given in Eqn. 4 enables directors to fine-tune the VPSR results by modifying the p
value between [1,100]. To validate VPSR metric and to show how a change in p affects the results, in this sub-
section, we provide the frame-wise results for the proposed VPSR metric for two different cases: considering
the whole saliency map (p = 100) and considering the highest probabilities that sum up to 50% (p = 50).
Sample VPSR metric results were provided in the captions of Fig. 3 along with sample frames. These
sample results show that a VPSR value of 0.667 corresponds to a very good overlap between the DC viewport
and the estimated saliency while a VPSR value of 0.018 indicates poor correspondence. The values are more
intuitive for VPSR5 as it yields both higher and lower values for these examples. Fig. 4 shows the overall

Table 1: Mean AUC and NSS metric results across all frames comparing saliency maps and viewers’ viewing
directions.

Film ‘ “DB” ‘ “Jaunt” ‘ “Luther” ‘ “Vaude” ‘ Overall
AUCvieyers | 0.8940 | 0.9264 | 0.9346 | 0.8594 | 0.9036
NSSViewers | 1.7367 | 27249 | 27531 | 25691 | 2.4459




results and allows analysis of how well saliency prediction and directors’ intent agree. We can identify dips,
which indicate areas that may require intervention to keep viewers’ attention. Overall, the VPSR metric was
higher for “Luther” compared to other contents. The graphs for VPSR and VPSR5o show similar characteristics,
while VPSR5( has larger swings; therefore, it might provide more intuitive results for the director.

6 Conclusion

In this paper, we proposed a metric that allows directors to optimise their cinematic VR content for viewer
guidance. To demonstrate how this metric is capable of yielding useful scores for directors, we used the
AVS360 saliency estimation method on an omnidirectional video dataset. We first validated that AVS360
predicts viewers’ attention well, and then we presented frame-wise VPSR results. The visual results along with
the frame-wise results show that the VPSR metric is indicative of how well the intended viewports could retain
viewers’ attention.

The results indicate that the AVS360 model and the VPSR metric could form part of a plug-in that will
notify the director of regions of possible distractions within the film. The directors will be presented with
frame-wise VPSR results as shown in Fig. 4 and they can identify the dips in VPSR values (e.g., dips in visual
attention) without checking the saliency estimation results for all the frames manually. With this information
the director could then alter the film set during the production or use visual effects (VFX) in post-production
accordingly. The VFX option could even be done in an adaptable manner should the viewers’ attention stray.
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