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High Resolution Light Field Recovery with
Fourier Disparity Layer Completion,
Demosaicing, and Super-Resolution

Mikael Le Pendu, and Aljosa Smolic

Abstract—In this paper, we present a novel approach for recovering high resolution light fields from input data with many types of

degradation and challenges typically found in lenslet based plenoptic cameras. Those include the low spatial resolution, but also the

irregular spatio-angular sampling and color sampling, the depth-dependent blur, and even axial chromatic aberrations. Our approach,

based on the recent Fourier Disparity Layer representation of the light field, allows the construction of high resolution layers directly

from the low resolution input views. High resolution light field views are then simply reconstructed by shifting and summing the layers.

We show that when the spatial sampling is regular, the layer construction can be decomposed into linear optimization problems

formulated in the Fourier domain for small groups of frequency components. We additionally propose a new preconditioning approach

ensuring spatial consistency, and a color regularization term to simultaneously perform color demosaicing. For the general case of light

field completion from an irregular sampling, we define a simple iterative version of the algorithm. Both approaches are then combined

for an efficient super-resolution of the irregularly sampled data of plenoptic cameras. Finally, the Fourier Disparity Layer model naturally

extends to take into account a depth-dependent blur and axial chromatic aberrations without requiring an estimation of depth or

disparity maps.

Index Terms—Light Fields, Fourier Disparity Layers, Super-Resolution, Demosaicing, Completion, Demultiplexing, Plenoptic Camera.

✦

1 INTRODUCTION

L IGHT fields enhance the traditional 2D images with two
additional angular dimensions representing a variation

of the viewpoint along a plane. The recent advances in
computational photography have made it possible to cap-
ture dense light fields, allowing for a continuous change
of viewpoint as well as post-capture refocusing. However,
capturing a dense and high quality light field from a real
scene remains a challenging task. A common approach
consists in capturing first a sparse light field either with a rig
of cameras or with a single moving camera. View synthesis
algorithms can then be used to simulate a dense angular
sampling from the sparse set of captured views.

Lenslet based plenoptic cameras offer a promising al-
ternative by capturing a dense light field in a single shot
with a portable device. A microlens array placed in front
of the sensor splits the light rays coming from different
angles, hence forming many images of the scene from
different viewpoints varying within the camera aperture.
In the typical setting where the sensor is placed at the
microlenses’ focal distance [1], the angular sampling density
is only limited by the sensor resolution. However, the spatial
resolution is much lower than in conventional cameras,
since each view captures only one pixel per microlens. While
a higher spatial sampling can be achieved in the focused
plenoptic camera setting [2] this comes at the expense of
the angular resolution. Furthermore, the extraction of high
quality views form the plenoptic RAW data is particularly
challenging. For example, conventional 2D demosaicing is
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insufficient to retrieve accurate colors from the bayer color
pattern applied on the sensor. Methods specifically taking
the light field structure into account are required [3], [4],
[5]. Additionally, due to manufacturing difficulties, the size
of each microlens may not be a multiple of the pixel size,
and a perfect alignment of the microlens array with the
sensor is unlikely, which results in an irregular sampling
in the spatio-angular 4D space. Some camera designs also
use an hexagonal array of microlenses in order to optimize
the spatial sampling, which further requires resampling the
extracted views from an hexagonal to a square grid of pixels.
Finally, limitations of the optics introduce several artefacts
such as depth-dependent blur and chromatic aberrations.

In the traditional imaging pipeline for plenoptic cameras,
the demosaicing, the angular and the spatial resampling are
treated sequentially, with successive interpolation steps [6],
[7], [8], [9]. Spatial super-resolution is generally considered
as a separate problem and does not take into account the
errors accumulated in the early view extraction steps. Fur-
thermore, while light field super-resolution is a very active
topic, only few methods consider a depth-dependent blur
model.

In this paper, we propose a super-resolution method that
can simultaneously address the various types of degrada-
tion of real captures in a single optimization framework.
Our method is based on the Fourier Disparity Layer model
(FDL) [10] in which a set of layers, constructed in the Fourier
domain, can be shifted and summed to form any view
of the light field. Unlike [10], however, we construct the
FDL that optimally reconstructs views with an incomplete
spatial sampling. The missing samples are thus naturally
completed thanks to the inter-view dependencies captured
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by the model. A novel pre-conditioning approach further
ensures spatial consistency. We show that when the missing
pixels form a regular pattern (e.g. super-resolution), the
problem is expressed as simple systems of linear equations
in the Fourier domain, allowing for fast computations. For
the general case of completion with an irregular sampling,
we also present an iterative version of our algorithm. In both
cases, color demosaicing is addressed using a regularization
term in the FDL optimization to exploit inter-component
correlations. Furthermore, thanks to the flexibility of the
FDL model, the depth-dependent blur and axial chromatic
aberrations can be taken into account and compensated for,
without increasing the computational complexity.

In our experiments, we first evaluate the performance
of our super-resolution algorithm with respect to the state-
of-the-art in light field super-resolution. Then, in the more
challenging scenario of high resolution light field extrac-
tion from plenoptic camera RAW data, we apply our full
optimization framework combining completion and super-
resolution along with demosaicing and correction of depth-
dependent blur and chromatic aberrations. Our experiments
with Lytro Illum camera data reveal finer details and an
increased depth of field compared to existing approaches,
including the official Lytro Desktop software.

In summary, the contributions of the paper are:

‚ Theoretical analysis of the relationship between fre-
quencies in the case of missing pixel data.

‚ Fast FDL super-resolution algorithm considering
small subsets of frequencies. Unlike the FDL con-
struction in [9] that treats frequencies independently,
the proposed algorithm can recover the high frequen-
cies from the aliasing in the lower ones.

‚ Derivation of a pre-conditioning matrix enforcing
spatial consistency.

‚ Iterative version of the algorithm for the more gen-
eral light field completion problem.

‚ Definition of a color regularization term for im-
proved color demosaicing.

‚ Application to high quality view extraction from
real lenslet RAW data using the full optimization
framework and further leveraging the flexibility of
the FDL model to correct depth-dependant blur and
axial chromatic aberrations.

2 RELATED WORK

2.1 Light Field super-resolution

Our work is essentially related to the topic of light field
super-resolution. Fundamental work in this area has been
proposed by Liang and Ramamoorthi [11], studying an
advanced image formation model for lenslet based cameras.
It accounts for physical parameters such as the angular
sensitivity of the photosensors as well as their spatial extent
and that of the microlenses. Derivations from the model
allow them to characterize the depth-dependent filtering
effect of the combined microlenses and sensor. Their anal-
ysis confirms the empirical observation that, despite this
filtering, spatial aliasing remains in the captured light fields,
hence allowing for effective super-resolution exploiting the
multiple views.

Although we do not consider the full image forma-
tion model of [11], our method can be used to tackle
a depth-dependent blur. This aspect is often ignored in
super-resolution, with some exceptions however, such as
the method of Bishop and Favaro [12], using an image
formation model to derive a Bayesian framework.

The models in [11] and [12] do not consider the Bayer
array that applies a red, green, or blue filter on each pixel.
Therefore, a color demosaicing step must be applied first to
retrieve the full color information at each pixel. Demosaicing
errors may then be further increased by deconvolution.
An alternative approach is used in [3], [4], [13], [14],
where the color components are super-resolved separately,
therefore avoiding a propagation of demosaicing artifacts.
However, unlike our method, they do not exploit the strong
correlations between RGB components, or only partially,
in the method of Yu et al. [4], for recovering the red and
blue components. To our knowledge, none of the light
field demosaicing methods simultaneously compensate for
chromatic aberrations. Furthermore, most other works in
light field super-resolution essentially focus on inverting
a given downsampling operator with fixed blur kernel,
therefore ignoring depth-dependent blur as well as irregular
sampling and color issues.

Another challenging aspect of light field super-
resolution is the need for accurate depth estimation, which
is difficult to perform from the input aliased low resolu-
tion data. Several methods including [12], [15], [16], [17]
rely on disparity information obtained separately from the
super-resolution algorithm. On the other hand, Alain and
Smolic [18] estimate correspondences between views that
are refined within the super-resolution algorithm. While
providing high quality results, this type of approach is very
computationally intensive. Thanks to a graph-based prior
capturing the light field structure, the method of Rossi and
Frossard [19] only requires a fast and approximate disparity
estimation. However, the global graph-based optimization
itself has a high computational complexity. By contrast, our
method is fast and only requires a single disparity value per
layer of the FDL model, reflecting the disparity distribution
in the scene. These values are efficiently obtained with the
FDL calibration in [10].

Finally, a very recent body of work explores approaches
fully based on machine learning [20], [21], [22], [23], [24],
[25], [26], [27]. While reaching very high performance by
implicitly learning both spatial and angular image priors,
the current methods are limited in their applications due
to the impossibility to adjust parameters such as the blur
kernel, or the number of input views. In these methods, the
training dataset consists of original light fields with their
associated downsampled version. The model learnt is thus
specific to the downsampling used, and the training process
must be repeated to address another blur filter.

2.2 Fourier Disparity Layers

Our work relies on the Fourier Disparity Layer representa-
tion of the light field [10]. In essence, the FDL model consists
of a set of layers, each layer mostly containing the texture
information at a given depth in the scene. Each layer is
associated to a disparity value representing its depth, so
that any view of the light field can be reconstructed as a
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TABLE 1
Table of notation

Symbols Description

Lj Light field view of index j (j P v1,mw).

lk Layer of index k in the FDL model (k P v1, nw).

µj Mask indicating missing pixels in view Lj .

φ, ψ Respectively spatial and angular blur filters.

uj Angular coordinate of input view Lj .

dk Disparity value associated with the layer lk .

S Super-resolution factor.

N,N0 Spatial resolution of the images respectively with and
without super-resolution. (N “ S ¨ N0).

q, r, t
Indices for discrete frequency components (q “ r ` tN0)

q P v0, N ´ 1w, r P v0, N0 ´ 1w, t P v0, S ´ 1w.

ωq Spatial frequency of index q (ωq “ q{N ).

f̂ Fourier transform of a function f .

z Conjugate of a complex number z.

A, x A matrix (bold uppercase) and vector (bold lowercase).

Aq, xq Respectively a matrix and a vector with index q.

pAqqj,k Element of a matrix Aq on the jth row and kth column.

pxqqk kth element of a vector xq.

AJ Transpose of a matrix A.

A˚ Conjugate transpose of A (A˚ “ AJ).

sum of the layers shifted according to their disparity value
and the view position. The FDL model can be determined
in order to optimally reconstruct a set of input light field
views. It was shown in [10] that in the Fourier domain, this
global optimization consists in simple linear least square
problems expressed independently at each spatial frequency
component, which is ideal for GPU parallel computations.
A calibration method was also derived to determine the
disparity value of each layer and the input view coordinates
which are required for the layer construction.

Several applications such as real-time refocusing, view
interpolation, or denoising naturally arise from this ap-
proach. However, it does not address super-resolution, de-
mosaicing, or more generally, completion of light fields
since the input views with missing samples cannot be trans-
formed in the Fourier domain. Therefore, a generalization to
these applications is not straightforward, and it is the main
contribution of our paper.

3 GENERAL PROBLEM FORMULATION

For simplicity, we consider a 2D spatio-angular slice Lpx, uq
of the traditional 4D light field, where x and u represent
respectively a spatial and an angular dimension. Generaliza-
tion to the 4D parameterization as defined in [28] is straight-
forward due to the separability of the Fourier transform. The
main notations of the paper are summarized in Table 1.

A view of index j at angular coordinate uj is defined

by Ljpxq “ Lpx, ujq and its Fourier transform is L̂jpωq,
where ω is the spatial frequency. The Fourier Disparity
Layer model consists of a set of n layers represented in the

Fourier domain and noted l̂kpωq with k P v1, nw. Each layer
is associated to a disparity value dk. A view Lj of the light
field is then predicted in the Fourier domain by the FDL
model as:

L̂jpωq “
nÿ

k“1

e2iπujdkω l̂kpωq, (1)

where the multiplication by e`2iπujdkω is interpreted in the
spatial domain as a shift by uj ¨dk. Intuitively, it corresponds
to the displacement of a point of disparity dk between the
reference view (at u “ 0) and the view Lj .

The problem is now to construct the FDL from m input
views Lj (j P v1,mw) with discrete spatial sampling.

3.1 Case of complete view sampling

To introduce the matrix notations that will be used through-
out the paper, let us first state the problem as in [10],
assuming that each input view forms a band-limited signal
without missing sample. The discrete Fourier transform is
obtained at every frequency ωq “ q{N , where N is the
number of pixels in each view and q P v0, N´1w. According
to Eq. (1), the FDL construction then consists in solving the
following linear problem for each frequency ωq :

xq “ argmin
x

‖Aqx ´ bq‖
2

2
` λ ‖x‖

2

2
, (2)

where λ is the l2 regularization parameter and where we
define the matrices Aq P C

mˆn, and vectors bq P C
mˆ1

and xq P C
nˆ1 with their elements indexed by j and k:

pAqqjk
∆
“ e2iπujdkωq , (3)

pbqqj
∆
“ L̂jpωqq, (4)

pxqqk
∆
“ l̂kpωqq. (5)

Note that a more elaborate regularization term was used
in [10], but we will consider a l2 regularization here for
simplicity. This problem has a well-known solution:

xq “
`
Aq

˚Aq ` λIn
˘´1

Aq
˚bq, (6)

where In is the identity matrix of size n ˆ n, and Aq
˚

denotes the conjugate transpose of Aq.

3.2 Case of incomplete view sampling

Now, in the case where the input views contain unknown
samples, their discrete Fourier transform is unknown. How-
ever, by defining a mask µj such that µjpxq “ 0 if Ljpxq
is unknown, then µjpxq ¨ Ljpxq is known for all x and its
discrete Fourier transform can be computed numerically.
We can then redefine the vectors bq from Eq. (4) with

pbqqj “ {rµjLjspωqq. Knowing that the multiplication in the
spatial domain corresponds to a circular convolution in the
discrete Fourier domain, and using Eq. (1), the relation with
the FDL model can then be obtained:

pbqqj “
1

N

N´1ÿ

q1“0

L̂jpωq1 q ¨ µ̂jppωq ´ ωq1 qmod 1q (7)

“
1

N

N´1ÿ

q1“0

nÿ

k“1

e2iπujdkωq
1

l̂kpωq1 q ¨ µ̂jppωq ´ ωq1 qmod 1q. (8)

where amod b represents the remainder of the euclidean
division of a by b. Then, we want to find the disparity
layers that verify this equation for every q P v0, N ´ 1w
and j P v0,mw.

In order to express this linear relation in matrix form,
let us first define the diagonal matrices Mq,q1 with their
diagonal terms

pMq,q1 qj,j “
1

N
¨ µ̂jppωq ´ ωq1 qmod 1q (9)
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From Eq. (8), we can then write the FDL construction
problem as the following linear optimization:

x “ argmin
x

‖Ax ´ b‖
2

2
` λ ‖x‖

2

2
, (10)

where A, b, and x are defined by:

A
∆
“

¨
˚̋

M0,0A0 . . . M0,N´1AN´1

...
...

MN´1,0A0 . . . MN´1,N´1AN´1

˛
‹‚, (11)

b
∆
“

`
b0

J, . . . , bN´1
J

˘J
, (12)

x
∆
“

`
x0

J, . . . , xN´1
J

˘J
. (13)

Solving this problem constructs the FDL directly in the
Fourier domain while ignoring the contribution in the spa-
tial domain of the unknown pixels. Therefore, reconstruct-
ing the views from the resulting FDL using Eq. (1) naturally
completes the missing pixels. However, while the problem
has a solution similar to Eq. (6), the size of the matrix A is
mN ˆ nN , which makes the matrix inversion impractical
(the number of pixels N in each view can be very large).

In Section 4, we derive practical algorithms from these
results. In particular, we show in Section 4.1 how Eq. (10)
can be split into smaller size problems in the case of super-
resolution, where the unknown pixels form a regular grid.

3.3 Depth-Dependent Deconvolution

Previously, we have assumed that the known pixels where
not filtered (e.g. blurred in the capture or in a downsampling
process). Let us now generalize the FDL construction for the
case of an input light field filtered before the sampling by
spatial and angular filters. Since the filtering is performed
before sampling, we consider in this section the continuous
light field domain px, uq P R

2. Hence, for the derivations in
this section, we use the notation Lupxq “ Lpx, uq for a view
u instead of Ljpxq “ Lpx, ujq.

Let us note Lfilt the light field filtered by a spatial filter

φ and an angular filter ψ. The Fourier transform L̂filtu0
of a

view Lfiltu0
of the filtered light field is given by:

L̂filtu0
pωq “

`8ż

´8

L̂u0´upωqφ̂pωqψpuqdu, (14)

where the angular filtering is performed as a convolution
with ψ in the angular dimension and as a Fourier domain

multiplication by φ̂ in the spatial dimension. Using the FDL
decomposition in Eq. (1), we obtain:

L̂filtu0
pωq “

`8ż

´8

nÿ

k“1

e2iπpu0´uqdkω l̂kpωqφ̂pωqψpuqdu, (15)

“
nÿ

k“1

l̂kpωqe2iπu0dkωφ̂pωq

`8ż

´8

e´2iπudkωψpuqdu, (16)

“
nÿ

k“1

e2iπu0dkωφ̂pωqψ̂pdkωql̂kpωq. (17)

Therefore, the spatio-angular filter φ ¨ ψ of the light field

corresponds to the depth-dependent filter φ̂pωqψ̂pdkωq for

a Fourier Disparity Layer l̂k of disparity dk. The deconvo-
lution is directly obtained by solving the FDL optimization
problem (i.e. Eq. (2) without or Eq. (10) with completion)
and by replacing the definition of Aq in Eq. (3) by:

pAqqjk
∆
“ e2iπujdkωq φ̂pωqqψ̂pdkωqq. (18)

4 ALGORITHMIC SOLUTIONS

4.1 Super-resolution problem

In this section, we show that the completion problem greatly
simplifies in the case of super-resolution thanks to the
highly repetitive pattern of missing pixels. After deriving
the new problem formulation, we present a preconditioning
approach that further ensures spatial consistency of the
results. Finally, we propose a simple post-processing step.

4.1.1 Derivations from the General Completion Problem

Here, we note N0 the input spatial resolution and S the
super-resolution factor. The spatial resolution of the target
light field is then N “ SN0. Spatial frequencies ωq are
sampled as ωq “ q{pSN0q, with q P v0, SN0 ´1w. For super-
resolution, we can define the same mask µ for all the views
as:

µpxq “

#
S ifxmodS “ 0,

0 otherwise.
(19)

Its discrete Fourier transform µ̂ is then:

µ̂pωqq “
SN0´1ÿ

x“0

µpxq ¨ e
´2iπx

q
SN0 (20)

“S
N0´1ÿ

x“0

e
´2iπx

q
N0 “

#
SN0 if qmodN0

“ 0,

0 otherwise.
(21)

Therefore, the matrices Mq,q1 defined in Eq. (9) become:

Mq,q1 “

#
SN0

N
Im “ Im if pq ´ q1qmodN0

“ 0,

0 otherwise.
(22)

Using Eqs. (11) and (22), We can now express the con-
struction matrix A for the super-resolution problem:

A “

¨
˚̋
D0 . . . DS´1

...
. . .

...
D0 . . . DS´1

˛
‹‚, (23)

where Dt (with index t P v0, S ´ 1w) is a block-diagonal
matrix formed by (see illustration in Fig. 1):

Dt “ diag pAtN0
,AtN0`1, ...,AtN0`N0´1q (24)

Furthermore, computing the discrete Fourier Transform
of µLj gives:

pbqqj “ {rµLjspωqq “ S

N0´1ÿ

x“0

LjpSxq ¨ e
´2iπx

q
N0 (25)
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Fig. 1. Simplification of the mSN0 ˆ nSN0 super-resolution problem
into N0 small problems of size m ˆ nS. The Illustration shows the case
of a super-resolution factor S “ 2 and an input resolution N0 “ 3. In
practice, N0 can be very large (number of pixels of each input view).

Therefore, for indices r P v0, N0 ´ 1w and t P v0, S ´ 1w,
we have br “ br`tN0

. From this result, and given the block-
diagonal structure of the matrices Dt, the problem can then
be split into N0 smaller independent problems of the form:

x̃r “ argmin
x

∥

∥

∥
Ãrx ´ br

∥

∥

∥

2

2

` λ ‖x‖
2

2
, (26)

with Ãr
∆
“

`
Ar,Ar`N0

, . . . , Ar`pS´1qN0

˘
, (27)

and x̃r
∆
“

´
xJ
r ,x

J
r`N0

, . . . , xJ
r`pS´1qN0

¯J

. (28)

The high resolution FDL, l̂kpωqq is thus obtained for
all frequency indices q “ r ` tN0 using Eqs. (28) and (5).
To facilitate understanding of these derivations, the matrix
structure and simplification process are illustrated in Fig. 1.

Note that only small groups of S frequencies are in-
volved in each problem of index r. Since Ãr P C

mˆnS , the
problem size is independent of the input image resolution
N0, making the direct resolution of the linear system prac-
tical. Furthermore in Eq. (25), LjpSxq corresponds to the
low resolution version of the image Lj . The vectors br are
then obtained by computing directly the Fourier transform
of the low resolution input views. This further accelerates
the implementation.

4.1.2 Preconditioning

In practice, depending on the disparity values, the number
of views available and their angular coordinates, the super-
resolution problem may be ill conditioned. In this situation,
the l2 regularization term in Eq. (26) prevents the frequency
components from taking extreme values, but it does not take
into account global properties of the frequency spectrum
in natural images. In particular, high frequencies are ex-
pected to have lower complex magnitudes on average than
lower frequencies. In Eq. (26) the frequencies ωr , ωr`N0

, ...,
ωr`pS´1qN0

are given the same weight although they are
very distant in the frequency spectrum. As a result, solving
the problem tends to produce peaks of magnitude at high
frequencies located at ωN0

, ..., ωpS´1qN0
due to the peak

around the frequency zero (i.e. b0) naturally contained in
the low resolution input. The consequence for the recon-
structed views is that the recovered pixels take too low
values (see Fig. 2).

In order to solve this issue and ensure spatial consis-
tency, we propose a preconditioning method that weights
the respective contributions of the different frequency com-

Fig. 2. Super-resolution without preconditioning (left) and with precondi-
tioning (right). Without preconditionning, the recovered pixels have too
low values and the Fourier spectrum displays peaks at high frequencies.

ponents. Mathematically, the preconditioned problem is ex-
pressed as:

ỹr “ argmin
y

∥

∥

∥
ÃrPry ´ br

∥

∥

∥

2

2

` λ ‖y‖
2

2
,

x̃r “ Prỹr.

(29)

where Pr P C
nSˆnS is a diagonal preconditioning matrix.

Now, let us consider the worst case where only one
view noted L1 is available. It can be shown that when
solving the problem without preconditioning with Eq. (26),
the unknown pixels are completed with zeros since there
is no other view providing information on these pixels. In
the preconditioned problem, we derive the matrices Pr to
change this default behaviour so that in the single view case,
the FDL obtained is equal to a reference FDL noted lref

produced as follows:

1) Upsample the view L1 with an interpolation filter η,
2) Apply the simple FDL construction in Eq. (2) from

the already upsampled image.

The interpolation filter η ensures spatial consistency,
thus avoiding the too dark completed pixels when the
super-resolution problem is ill conditioned. In our imple-
mentation we choose the bilinear filter since bilinear inter-
polation does not affect the known pixels, hence avoiding
loss of information in the cases where the problem is already
well conditioned.

Since this analysis is based on the single view case, no
depth information can be retrieved with multiple layers
in the FDL model. Therefore, we can derive Pr for a
simplified single layer FDL model. We show that a direct
formula can be obtained for the matrices Pr satisfying the

equality between the reference FDL l̂ref and the result l̂ of
the preconditioned super-resolution. We provide here the
outline of the derivations but more details are given in the
supplementary materials.

For a given frequency index r P v0, N0 ´ 1w, and a single
layer k with disparity dk, we define condensed notations in
Table 2. Note that b “ br is defined as a scalar since there is
only one view.

The goal is then to determine pt such that xt “ zt. First,
we want to find the expression of xt (i.e. FDL coefficients

TABLE 2
Condensed scalar notations for a given frequency index r P v0, N ´ 1w

and for a single layer k.

@t P v0, S ´ 1w, pt
∆
“ pPrqt`1,t`1

at
∆
“ e

2iπdkωr`tN0 ht
∆
“ η̂pωr`tN0

q

ft
∆
“ φ̂pωr`tN0

qψ̂pdkωr`tN0
q xt

∆
“ l̂kpωr`tN0

q “ px̃rqt`1

b
∆
“ {rµL1spωr`tN0

q p“ br`tN0
“ brq zt

∆
“ l̂

ref
k

pωr`tN0
q
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obtained by solving the preconditioned super-resolution in
Eq. (29)). Given Pr, Eq. (29) has the general solution:

x̃r “ Pr

´
Pr

˚Ã˚
r ÃrPr ` λIS

¯´1

Pr
˚Ã˚

rbr. (30)

Note that in the single view case, the matrix Ãr becomes
a row vector. Therefore, the matrix inversion can be further
derived using the Sherman-Morrison formula (see details in
supplementary materials). The solution obtained is then:

x̃r “
PrPr

˚Ã˚
r

λ` ÃrPrPr
˚Ã˚

r

br. (31)

Using the notations in Table 2 and the definitions of Ãr

and x̃r in Eqs. (27) and (28), we can then rewrite Eq. (31):

@t P v0, S ´ 1w, xt “
|pt|

2 ¨ atft

λ`
řS´1

t1“0
p|pt1 |2 ¨ |ft1 |2q

¨ b (32)

Now, let us find the expression of zt (i.e. reference
FDL coefficients). Upsampling an image with filter η is
performed by first upsampling with the mask µ (i.e. set
intermediate pixels to zero), and then applying the filter
η. Hence, at each frequency ωq with q “ r ` tN0, the

upsampled view is given by η̂pωqq{rµL1spωqq “ htb. The
reference FDL is then obtained by solving the simple FDL
construction in Eq. (2) where the input bq is replaced by
htb. Using the general solution in Eq. (6) expressed with the
scalar notations, we obtain (see details in supplementary
materials):

zt “
atft

λ` |ft|2
¨ htb (33)

By enforcing the equality xt “ zt, we obtain the follow-
ing equations for the diagonal elements pt of the precondi-
tioning matrix Pr:

@t P v0, S ´ 1w, |pt|
2 ¨

ˆ
λ` |ft|

2

ht

˙
´
S´1ÿ

t1“0

|pt1 |2 ¨ |ft1 |2 “ λ.

(34)
We show in the supplementary materials that this prob-

lem is solved by using:

pt “

gffe λ ¨ ht

pλ` |ft|2q ¨
´
1 ´

řS´1

t1“0
pht1 |ft1 |2{pλ` |ft1 |2qq

¯ ,

(35)
The diagonal pre-conditioning matrix is then formed as
Pr “ diagpp0, ..., pS´1q. More generally, for the case of mul-
tiple layers, the size of Pr is nS ˆ nS instead of S ˆ S. We
directly generalize from the single layer case by computing
for each layer k the disparity-dependent filter coefficients
ft (see Table 2). The corresponding values pt are then
computed with Eq. (35) and arranged in the diagonal matrix
Pr according to the layer index k and frequency index t.

4.1.3 Post-Processing: Residual Back-Projection

Because of the l2 regularization term, some loss of informa-
tion occurs when solving the super-resolution optimization
problem. As a result, downsampling the super-resolved
light field (with the same filters φ and ψ used in the model)
does not recover exactly the original low resolution input.
While this might be a desirable filtering effect (e.g. noise

Fig. 3. Super-resolution results on the natural light field ‘Vespa’. Left:
without post-processing (PSNR=36.25dB). Right: with post-processing
(PSNR=37.59dB). The bottom right part of each image represents to the
absolute error with respect to the ground truth (magnified 10x).

reduction, brightness consistency between views) and is
necessary for an effective super-resolution, it may also cause
some artifacts (e.g. around occlusions areas). Therefore, we
additionally propose a simple post-processing step, similar
to the back-projection approach commonly used in super-
resolution, to ensure that the super-resolved light field
matches the low resolution input.

For that purpose, at each frequency ωr of the low res-
olution input (r P v0, N0 ´ 1w), we compute the residual
br ´ Ãrx̃r between the original light field views and the
ones obtained with super-resolution and downsampling.
For each view, the residual is simply upsampled by zero-
padding in the Fourier domain (i.e. unchanged for frequen-
cies below ωN0

, and set to zero for frequencies between
ωN0

and ωN ). Finally, the residual is deconvolved with the

spatial filter φ (i.e. division by φ̂ in the Fourier domain), and
added back to the view. Note that only the spatial filter can
be inverted for the residual deconvolution since the post-
processing is performed independently for each view. An
example of result is shown in Fig. 3.

4.2 Algorithm for General Completion

When the input views have an irregular spatial sampling,
the general completion problem cannot be simplified. In-
stead of solving directly the very large problem presented
in Section 3.2, we propose an iterative algorithm (see Al-
gorithm 1). The algorithm iteratively filters the light field
thanks to a FDL model (steps 2 and 3), and updates only the
unknown pixels by replacing them with their filtered values
(step 5). Note that forward and inverse Fourier transforms
are needed (steps 1 and 4) since the filtering is performed
in the Fourier domain while the update is performed in the
pixel domain.

Similarly to the original problem in Section 3.2, this
approach constructs the FDL by only constraining the values

Fig. 4. Convergence of the iterative completion algorithm in the particular
case of x2 super-resolution. The reference for computing the mean
square error (MSE) is the result of the direct super-resolution method
from Section 4.1. The MSE tends to zero, showing the convergence to
the same solution as the direct super-resolution.
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Fig. 5. Demosaicing test where each view of a synthetic light field was masked by the Bayer color pattern. Left: one view of the ground truth light
field, Center: FDL super-resolution applied independently to RGB components, Right: FDL super-resolution with color regularization.

Algorithm 1: Iterative FDL completion

Data: Set of incomplete views Lj with an
initialization of the unknown pixels.

while not converged do

1. Compute Fourier transform L̂j of each view.
2. Construct a FDL model from the current views
(e.g. with Eq. (2)).

3. Reconstruct the views L̂1
j from the FDL model.

4. Compute inverse Fourier Transforms L1
j .

5. Update only the unknown pixels of each view
Lj with the corresponding pixels in L1

j .

of the known pixels in the input data. We show in Fig. 4
that in the particular case of super-resolution (i.e. regular
grid of known pixels), this algorithm converges to the same
solution as the direct algorithm presented in Section 4.1.

4.3 Demosaicing Problem

In the case of color images with a color mosaic filter (e.g.
bayer pattern), only one of the red green or blue compo-
nents is known at each pixel. While the super-resolution
or completion algorithms may be applied independently to
each component, improved results can be obtained by con-
sidering the strong correlations between color components.
These correlations are generally exploited in demosaicing
methods using an assumption of either color difference
constancy or color ratio constancy [29]. Following the color
difference constancy assumption, the intensity variations
(e.g. image gradients) of the red, green and blue components
should be similar. This prior can be encouraged in our
optimization approach by introducing a regularization term
that penalizes, for each layer lk, the differences between the
intensity variations of its red, green and blue components.

In order to define the color regularization, let us first
reformulate the simple FDL construction problem in Eq.(2)
for multiple components. For a color index c P tR,G,Bu,
we note lck and Lcj the corresponding color component of
the layer lk and view Lj respectively. Here, we define the
matrices of input views and layers coefficients Bq P C

mˆ3

and Xq P C
nˆ3 as pBqqj,c

∆
“ Lcjpωqq and pXqqk,c

∆
“ lckpωqq.

The vectors bq and xq from Eqs. (4) and (5) can then be
replaced by the matrices Bq and Xq in the original problem
of Eq. (2). Now, we can introduce a color regularization term

of the form
∥

∥

∥
XqGq

J
∥

∥

∥

2

2

, where Gq is a matrix computing

the differences in intensity variations between RGB compo-
nents. In our implementation, we use:

Gq “ γ̂pωqq

ˆ
´2 0.5 1.5

2 0 ´2

˙
, (36)

where γ is the filter for computing intensity variations. For
our implementation, we use the discrete Laplacian filter to

represent variations in both horizontal and vertical direc-
tions for 2D images with a single filter. The weights in
Eq. (36) were determined empirically to regularize more
strongly the red and blue components than the green com-
ponent that is usually more reliable.

The color regularized FDL construction (without com-
pletion or super-resolution) is then:

min
X

‖AqX ´ Bq‖
2

F
` λ ‖X‖

2

F ` λcol

∥

∥

∥
XGq

J
∥

∥

∥

2

F
, (37)

where λcol is the color regularization parameter and ‖.‖F
denotes the Frobenius norm. Because of the right multipli-
cation by Gq, the problem cannot be directly solved in this
matrix form. It must be expressed equivalently in vectorized
form using the vectorization operator vec and the Kronecker
product b as follows:

min
vecpXq

‖pI3 b AqqvecpXq ´ vecpBqq‖
2

2
` λ ‖vecpXq‖

2

2
`

` λcol ‖pGq b InqvecpXq‖
2

2
.

(38)

Therefore, we obtain a least squares problem with
Tikhonov regularization that can be solved efficiently. Note,
however, that due to the Kronecker product I3bAq, the size
of the problem is multiplied by 3 compared to the version
without color regularization.

In order to perform demosaicing, the completion algo-
rithm presented in Section 4.2 can be applied by replac-
ing the simple FDL construction in step 2, by the color
regularized problem of Eq. (38). Alternatively, when the
known pixels of each view form a regular pattern, the
color regularization can be adapted to the super-resolution
problem in Section 4.1. For that purpose, we can similarly
reformulate the super-resolution for multiple color com-
ponents by arranging the layer’s coefficients in the ma-

trices X̃r
∆
“

´
Xr

J,Xr`N0

J, ...,Xr`pS´1qN0

J
¯J

for each

frequency index r P v0, N0 ´ 1w (the matrices B̃r can be
defined accordingly). The color regularization term then

becomes λcol

∥

∥

∥
pG̃r b InqvecpX̃rq

∥

∥

∥

2

2

with G̃r defined as

G̃r
∆
“

`
pGr b e1qJ, ..., pGr`tN0

b et`1qJ, ...
˘J
, (39)

where et is a 1ˆS row vector with element t equal to 1 and
all the other elements equal to 0.

We show in Fig. 5 the effect of the color regularization for
the demosaicing problem in a synthetic example where the
input light field was generated by applying the traditional
Bayer pattern to each view.

5 APPLICATION: RAW LIGHT FIELD EXTRACTION

In this section, we show how the methods presented in
Section 4 can be used to extract high quality light field views
from the RAW data of plenoptic cameras. In particular, we



8

Fig. 6. RAW sampling with imperfect alignment between sensor and
microlenses. The view at angular coordinates pu, vq has only one pixel
known accurately (at the green cross location). For most microlenses
the exact pu, vq position (red crosses) falls between several pixels.

study the case of the unfocused plenoptic cameras [1] where
the image formed behind each microlens corresponds to an
angular patch at a given spatial coordinate.

5.1 Initial Views and Masks Extraction

In a first step, the spatio-angular samples must be extracted
from the RAW data. In the ideal case where the microlens
array and the sensor are perfectly aligned and where the
distance between the microlense’s centers is a multiple of
the pixel size, the number of views sampled in the RAW
data is equal to the number of pixels behind each microlens.
However, due to imperfect alignement, the angular patches
formed behind each microlens have different angular sam-
plings. As a result, at a given angular coordinate (i.e. view
position), only a few pixels may be available (see Fig. 6).
Therefore, a large number of views must be extracted in
order to contain all the pixels originally captured.

Conventional view extraction methods [6], [9] use 2D
interpolation (e.g. bicubic, bilinear) to extract a number of
views corresponding to the number of samples of each
angular patch, which results in loss of captured information.
Instead, we sample the views with half pixel precision and
use an interpolation to the nearest pixel. We additionally
extract a mask for each view indicating the positions of the
pixels known accurately. The mask is defined by assigning
each pixel of the sensor only to the closest extracted view.
In order to obtain an initial estimation of the complete color
information, we perform a 2D demosaicing of the RAW data
using the method in [30] before extracting the views.

5.2 Calibration and Chromatic Aberrations

Although the Fourier Disparity Layer construction does not
require a disparity map, it relies on the disparity value dk
of each layer lk and the angular coordinate uj of each input
view Lj . In order to determine the set of parameters ensur-
ing an optimal reconstruction, we use the FDL calibration
proposed in [10] applied to the light field initially extracted
as described in Section 5.1 (we do not use the mask here).

We additionally address the problem of chromatic aber-
rations by performing the calibration independently for
each color component. In particular, axial chromatic aber-
rations of the main lens result in different colors being in
focus at different depths. In the light fields captured by
plenoptic cameras, the disparity depends on the the depth in
focus during the capture. Hence, axial chromatic aberrations
can be removed by constructing the layers with different
disparity values for the red, green and blue components.
Then, the corrected views can be rendered from the FDL
model using Eq. (1) with the same parameters for all the

Fig. 7. Correction of axial chromatic aberrations. Top: without correction.
Bottom: with correction (FDL constructed from parameters calibrated
per-component). An external view is shown here since axial chromatic
aberrations increase for views with high angular coordinates (i.e. further
away from the central view).

Fig. 8. 2D masks for 2x super-resolution from either a square or an
hexagonal sampling. The mask in the Fourier domain µ̂ only has 4 non-
zero coefficients for both square and hexagonal samplings.

component (in practice we use the average of the parameters
of the 3 components). An example is shown in Fig. 7.

Note that due to a second type of chromatic aberrations
referred to as transversal, the color components may appear
to be scaled with different factors. This cannot be explicitly
compensated in our Fourier domain optimization. However,
using a model where the position of each view can also be
adjusted for each color component helps reduce moderate
transversal chromatic aberrations.

5.3 Completion, Super-Resolution and Demosaicing

Given the calibrated parameters, we can construct the
Fourier Disparity Layer model that best fits the known pix-
els in the extracted views. Due to the irregular sampling of
the plenoptic RAW data, we must use the the iterative ver-
sion of our completion algorithm presented in Section 4.2.
However, completing the missing pixels of the extracted
views still results in a low spatial resolution. Furthermore,
constructing the layers in low resolution has a filtering effect
on the spatial aliasing of the reconstructed views, which
loses valuable information for performing super-resolution
later in the process. Therefore, we perform the super-
resolution jointly with the completion. For that purpose,
the super-resolution with preconditioning in Eq.(29) is used
in step 2 of the completion algorithm. The low resolution
views are reconstructed from the high resolution layers (as
Ãrx̃r) in step 3, hence preserving the aliasing. Only at the
last iteration, the high resolution views are reconstructed
from the layers. Demosaicing is performed simultaneously
by using the color regularization term in Eq. (39).

Some plenoptic cameras use an hexagonal array of
micro-lenses to optimize the spatial sampling (e.g. Lytro
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TABLE 3
PSNR results and average runtimes for 2x super-resolution where the low resolution light field is generated using either the ‘box’ filter or the
gaussian filter (with standard deviation σ “ 1) for downsampling. The PSNR results correspond to the average PSNR of all the views. The

runtimes were obtained using a computer with 32GB RAM, Intel Core i7-7700 CPU and Nvidia GeForce GTX 1080 GPU. For each test, the best
and the second best results are shown in bold red and blue respectively.

From ‘box’ filter downsampling From gaussian filter downsampling (σ “ 1)

Bicubic
VDSR

[31]
PCA+RR

[21]
GB-SQ

[19]
Deep

LFSSR
[27]

FDL SR
(ours)

Bicubic
VDSR

[31]
PCA+RR

[21]
GB-SQ

[19]
Deep

LFSSR
[27]

FDL SR
(ours)

Fruits (INRIA) 32.68 33.63 32.50 35.86 37.98 36.26 30.44 30.77 31.37 34.04 32.28 35.12

Figurines (INRIA) 36.64 36.99 35.54 37.21 37.98 36.98 35.17 35.71 35.07 36.59 36.06 37.44

Friends (EPFL) 36.65 37.61 37.07 37.93 39.99 38.05 34.66 35.77 35.70 37.11 36.18 38.02

Vespa (EPFL) 35.45 36.72 35.67 38.24 39.67 37.59 33.40 34.57 34.42 36.56 35.06 37.20

Bikes (EPFL) 33.81 35.51 34.80 36.70 39.08 35.98 31.37 32.40 32.87 35.30 33.28 36.04

butterfly (HCI old) 37.05 38.26 37.00 39.35 40.79 40.66 35.31 36.64 36.06 36.82 36.66 39.46

sideboard (HCI) 27.21 28.14 27.52 30.86 31.50 30.64 25.56 25.77 26.51 28.39 27.06 29.32

dino (HCI) 35.57 37.24 35.59 38.39 40.23 38.35 33.75 34.88 34.63 35.96 35.26 37.49

cotton (HCI) 43.65 44.30 42.45 46.94 47.16 47.89 41.85 42.79 41.85 43.83 43.21 45.92

boxes (HCI) 33.30 34.09 32.56 36.27 37.46 34.97 31.42 31.20 31.99 34.20 33.09 35.56

pyramids (HCI) 26.92 26.74 26.94 27.69 27.84 31.29 26.01 26.10 26.20 25.96 26.27 28.88

Average PSNR 34.45 35.38 34.33 36.86 38.15 37.15 32.63 33.33 33.33 34.98 34.04 36.40

Average Runtime 1.6s 17s 95s „1h30m 48s 5.8s 1.6s 17s 95s ą10h 51s 5.9s

cameras). This results in an hexagonal grid of known pixels
in each view instead of the more common square grid. Our
super-resolution method can be adapted to this case by us-
ing an hexagonal 2D mask µ in the derivations, as illustrated
in Fig. 8. Thanks to the sparsity of the mask µ̂ in the Fourier
domain (e.g. 4 non-zero coefficients for 2x super-resolution),
the hexagonal super-resolution problem simplifies in the
same way as presented in Section 4.1. We only need to adapt
the indices of the frequency coefficients involved in the same
minimization (i.e. used in the construction of each matrix Ãr

and vectors x̃r and b̃r).

6 EXPERIMENTAL RESULTS

6.1 Light Field Super-Resolution

6.1.1 Experimental Setup

We first evaluate our super-resolution algorithm presented
in Section 4.1 in comparison with state-of-the-art light field
super-resolution methods: the GB-SQ method [19] using
graph-based optimization; the PCA+RR method [21] that
learns a mapping between low and high resolution patch
volumes in a linear subspace domain; the deep convo-
lutional network recently proposed in [27] (Deep LFSSR)
that performs separable convolutions between the spatial
and angular dimensions. We also include in our compar-
isons two reference single image super-resolution methods
applied per-view: the bicubic upsampling and the VDSR
method [31] based on a very deep convolutional network.

For this experiment, we downsample a light field with a
known blurring kernel φ. The downsampled version is used
as input of the super-resolution algorithm and the original
version serves as a ground truth for quality evaluation. For
a fair comparison, we do not use the angular blur ψ, since
the other methods do not allow depth-dependent deconvo-
lution. However, to evaluate the generalization capability
of the different methods we have tested two spatial blur
kernels. First, the ‘box’ filter averages blocks of S ˆS pixels
(S being the super-resolution factor). It is used in [27], for
generating the training low resolution dataset. The second
filter tested is the discrete approximation (using a 7x7 ker-
nel) of a gaussian filter with standard deviation σ “ 1.

Note that only our method and the GB-SQ method [19] can
be parameterized given a known filter φ 1. For the deep
learning approaches (VDSR [31] and DeepLFSSR [27]), we
have used the available pre-trained model.

The 2x super-resolution results are presented in Table 3
for natural light fields from the datasets of INRIA [32] and
EPFL [33] (captured with a Lytro Illum plenoptic camera),
as well as synthetic light fields from the HCI dataset [34].
For each tested light field, Table 3 reports the average peak
signal-to-noise ratio (PSNR) of all the views. The average
runtime of all the light fields is also given (for our FDL
super-resolution, the runtime includes the FDL calibration).

6.1.2 Results and Discussion

The results in Table 3 confirm that the methods designed for
light fields successfully exploit angular priors and generally
obtain better results than single image methods (bicubic,
VDSR).

When the low resolution input is generated using the
‘box’ filter, the best results are obtained with the Deep LFSSR
method [27]. However, the performance of this method
drops for the gaussian dowsampling (larger kernel than
the ‘box’ filter) and the super-resolved light fields remain
blurred (see Fig. 9). This is explained by the fact that the
Deep LFSSR method specifically learns a mapping between
low resolution light fields generated with a fixed downsam-
pling operator, and their original high resolution versions.
The model learned for the ’box’ filter downsampling does
not generalize well to other filters. Note that this is a
limitation of most learning based approaches, which also
include the PCA+RR method [21].

The PSNR performances of our FDL method are gener-
ally comparable to GB-SQ [19] in the case of the ‘box’ filter.
However, some differences can be observed on the visual
results in Fig.9. For a similar PSNR, while the FDL super-
resolution may create more artifacts, it better preserves the

1. The author’s implementation of GB-SQ was originally designed
for the ‘box’ filter but could be easily adapted for different filters.
However, computational complexity significantly increases with larger
kernel sizes (see running times in Table 3).
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Fig. 9. Visual comparisons for the x2 super-resolution of the fields ‘dino’ (HCI) and ‘Fruits’ (INRIA). PSNR values are indicated in each subfigure.

Fig. 10. x2 Super-resolution of the light field ‘pyramids’ (HCI) in the ‘box’
filter case for the Deep LFSSR and FDL SR methods.

fine details. This is particularly advantageous when the
low resolution input data is more blurred (i.e gaussian
filter downsampling). In this case, the FDL super-resolution
obtains the best results among all the tested methods.

In order to compare the performances of the angular
priors, we have included the light field ‘pyramids’ which
is a lambertian scene containing 3D shapes with very noisy
textures. This scene is very challenging for single image
methods (only using spatial priors), and can be better tack-
led using angular priors. For this light field, a large PSNR
gain is observed for our method compared to the other
approaches (e.g. more than 3dB gain with respect to Deep
LFSSR even in the ‘box’ filter case). The result is shown in
Fig. 10. This illustrates the efficiency of the FDL model for
exploiting angular consistency and preserving fine details.

Finally, regarding the computational complexity, the FDL
super-resolution is faster than the other tested methods at
the exception of the bicubic upsampling. Furthermore, it
is not significantly affected by the filter used, unlike the
GB-SQ method which has a high complexity that is further
increased by using the gaussian filter (7x7 kernel instead of
2x2 for the ‘box’ filter). Note that our method fully takes
advantage of GPU computations thanks to the possibility to
process different frequencies in parallel. The reported run-

times for the deep learning approaches (i.e. VDSR and Deep
LFSSR) were also obtained with GPU implementations.

6.2 RAW Light Field Extraction

Here, we present the result of the view extraction method
presented in Section 5. For the experiment, we have used
light fields captured with Lytro Illum cameras from the
INRIA [32] and EPFL [33] datasets. Our view extraction
performs x2 super-resolution (jointly with completion and
demosaicing) using the hexagonal pattern of the Lytro Illum
camera (see Fig. 8). For the spatial and angular filters φ and
ψ, we have used gaussian filters with respective standard
deviations σφ “ 0.33 and σψ “ 1.3. For the FDL model
construction, we use 20 layers and 30 iterations.

For the comparison, we show the results produced by
the official Lytro Desktop software (which includes super-
resolution), as well as the light fields extracted by a con-
ventional pipeline in [9] and super-resolved with the Deep
LFSSR method [27]. Note that [9] is based on the popular
light field toolbox in [6], and improves several aspects of
the view extraction such as the interpolations, color balance
and color consistency between views. However, it remains
a sequential approach with successive demosaicing and
resampling steps. In order to keep all the details of the
extracted views before applying the super-resolution, we
did not include the last denoising step suggested in [9].

Since no ground truth is available here, we only present
visual results in Fig. 11. Additional results are also presented
in the supplementary materials. Finer details are revealed
in the light field extracted with our FDL approach. This is
made possible by treating simultaneously the demosaicing,
resampling, and super-resolution in the same optimization.
On the other hand, in the sequential approach (i.e. Sequen-
tial Pipeline + DeepLFSSR in Fig. 11), artifacts and detail
loss accumulate at each step resulting in a low quality even
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Fig. 11. Light field extraction results from a Lytro Illum RAW image (‘Bee2’ from the INRIA dataset [32]). Left: conventional pipeline of [9] followed
by super-resolution using the Deep LFSSR method [27]. Center: Lytro Desktop software. Right: our method combining FDL completion, super-
resolution and demosaicing. Top: central view. Bottom: refocused image from the extracted light field (focused on the bee).

after super-resolution. Furthermore, thanks to the depth-
dependent angular filter as well as the sub-pixel angular
sampling, we effectively recover the full depth-of-field,
while the other methods produce blur in the background
and foreground regions far from the focus plane.

7 CONCLUSION

We have presented a novel approach for high resolution
light field recovery based on the Fourier Disparity Layer
representation. We have shown that in the Fourier do-
main, light field super-resolution can be formulated as
independent linear optimization problems, each problem
only involving a small subset of frequency components. This
allows for a fast direct super-resolution. The more general
light field completion problem is also addressed with an
iterative version of our algorithm that does not require the
known pixels to be arranged in a regular grid. We have
shown that in the case of demosaicing, where different color
components are missing for different pixels, our results are
improved by the addition of a regularization term exploiting
color component’s correlations. For the practical scenario
of extracting light fields captured with microlens-based
plenoptic cameras, we have proposed a complete optimiza-
tion framework that jointly performs completion, super-

resolution, and demosaicing, while taking into account
other optical degradations such as chromatic aberrations
and depth-dependent blur. Our approach fully optimizing
the whole extraction process can reveal very fine details in
real light field captures, allowing us to reach higher image
quality than existing RAW light field extraction methods.
The evaluation of our super-resolution algorithm alone also
shows favorable comparisons with the state-of-the-art, both
in terms of accuracy and computational cost.
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