

V-SENSE

A Geometry-Sensitive Representation for Photographic Style Classification

Koustav Ghosal, Mukta Prasad, Aljosa Smolic

IMVIP 2018, Belfast

Aesthetic vs Physical Properties

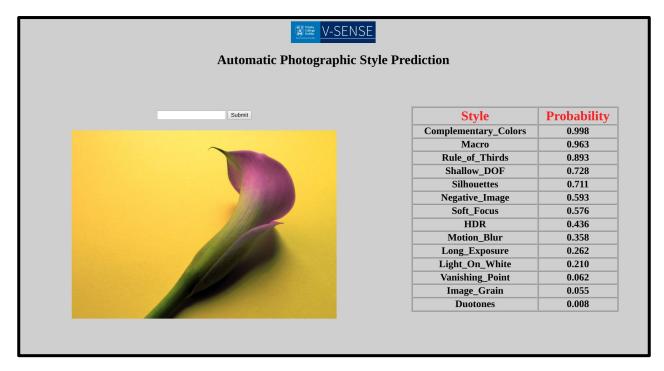
Physical Properties

Building, Windows, Logo

Man, Woman, Street

Glass, Lights, Room

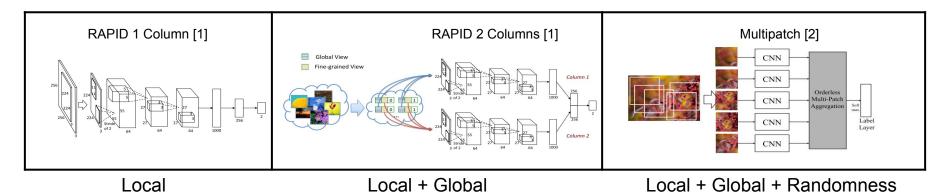
Aesthetic Properties


Good Symmetry, Soft Colours

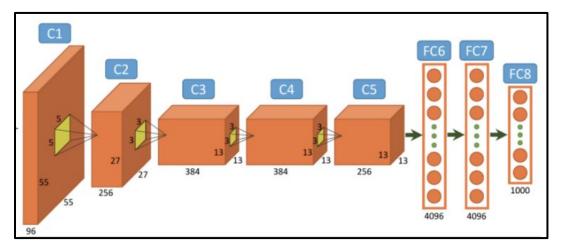
Black and White, High Contrast

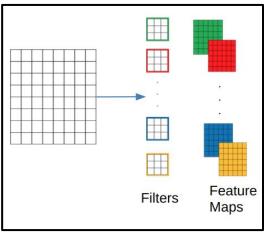
Good Bokeh, Complementary Colours

Aesthetic properties are less quantifiable, subjective properties and hence harder to be modelled.


Objective

https://github.com/V-Sense/A-Geometry-Sensitive-Approach-for-Photographic-Style-Classification.git


Traditional Approach


State of the art: Train a CNN on a photographic dataset.

- Lu, X., Lin, Z., Jin, H., Yang, J., & Wang, J. Z. (2014, November). Rapid: Rating pictorial aesthetics using deep learning. In Proceedings of the 22nd ACM international conference on Multimedia (pp. 457-466). ACM.
- 2. Lu, X., Lin, Z., Shen, X., Mech, R., & Wang, J. Z. (2015). Deep multi-patch aggregation network for image style, aesthetics, and quality estimation. In *Proceedings of the IEEE International Conference on Computer Vision* (pp. 990-998).

Standard Convolutional Filters

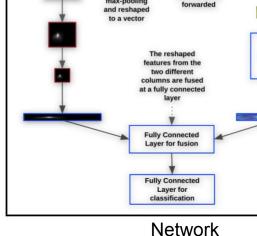
A standard CNN

Parameter sharing

'translation invariant', 'appearance cognizant

Image courtesy: https://www.saagie.com/blog/

Problems



- Diverse Aspect Ratio
- Position of the main subject is crucial for framing

Image courtesy: Flickr

Approach

maps are

downsampled

max-pooling

Sal-RGB = Saliency Maps [Cornia et al.] + RGB-based features.

> 'location cognizant', 'appearance invariant'

Saliency Maps

Detector

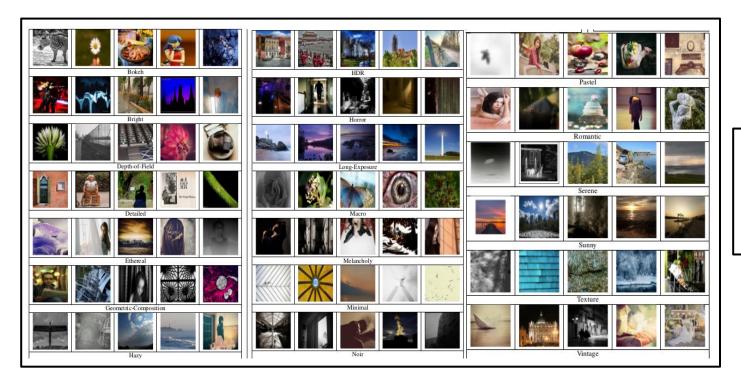
A random

sized crop is extracted and

Feature

Extractor

Marcella Cornia, Lorenzo Baraldi, Giuseppe Serra, and Rita Cucchiara. 2016. Predicting human eye fixations via an LSTM-based saliency attentive model. arXiv preprint arXiv:1611.09571 (2016)


Datasets

AVA Style

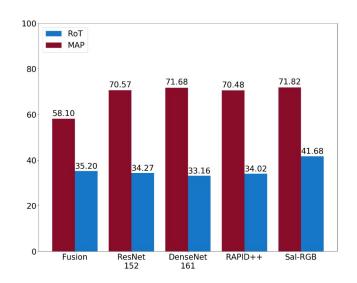
- 14 categories
- ~14000 Images
- Multi-labelled test data
- Highly imbalanced training data

Image courtesy: AVA Style dataset

Flickr Style

- 20 categories
- ~80000 images
- Complex Classes

Image courtesy: Flickr Style dataset


Results: Mean Average Precision (MAP)

Algorithm	Network	Augmentation	AVA	Flickr Style		
	Fusion [Karayev et al., 2014]	centre crop	58.10	36.80		
State of the	RAPID [Lu et al., 2014]	random crop, warp	56.81	-		
art	Multi-Patch [Lu et al., 2015]	random crop	64.07	-		
Our	DenseNet161 [Huang et al., 2016]	random crop	71.68	43.83		
baselines	ResNet152 [He et al., 2016]	random crop	70.57	43.65		
	RAPID++	random crop, warp	70.48	41.93		
Our method	Sal-RGB	random crop	71.82	43.45		

- Lu, X., Lin, Z., Jin, H., Yang, J., & Wang, J. Z. (2014, November). Rapid: Rating pictorial aesthetics using deep learning. In Proceedings of the 22nd ACM international conference on Multimedia (pp. 457-466). ACM.
- Lu, X., Lin, Z., Shen, X., Mech, R., & Wang, J. Z. (2015). Deep multi-patch aggregation network for image style, aesthetics, and quality estimation. In *Proceedings of the IEEE International Conference on Computer Vision* (pp. 990-998).
- Karayev, S., Trentacoste, M., Han, H., Agarwala, A., Darrell, T., Hertzmann, A., & Winnemoeller, H. (2013). Recognizing image style. arXiv preprint arXiv:1311.3715.
- K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," arXiv:1512.03385, 2015
- G. Huang, Z. Liu, and K. Q. Weinberger. Densely connected convolutional networks. arXiv preprint arXiv:1608.06993, 2016

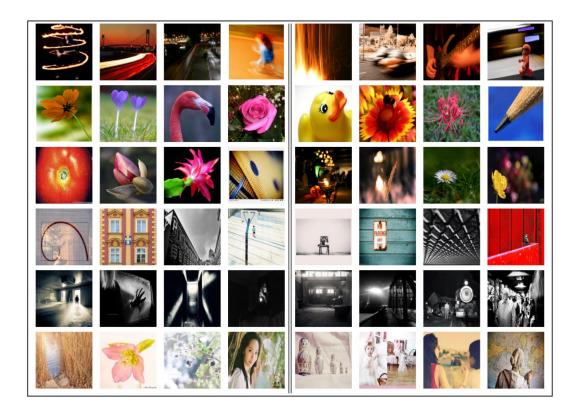
Results: Per Class Precision on AVA

Styles	Fusion (SoA) [Karayev et al. 2014]	Densenet161 [Huang et al. 2016a]	ResNet152 [He et al. 2016]	RAPID++	Sal-RGB
Complementary_Colors	0.469	62.33	62.15	61.49	61.41
Duotones	0.676	86.58	84.82	84.77	87.58
HDR	0.669	74.95	70.08	71.51	72.86
Image_Grain	0.647	81.55	79.48	83.15	82.20
Light_On_White	0.908	84.69	83.41	85.64	82.99
Long_Exposure	0.453	64.16	65.38	63.94	61.94
Macro	0.478	64.89	65.52	64.90	66.58
Motion_Blur	0.478	63.93	62.12	61.21	61.98
Negative_Image	0.595	87.40	86.11	82.01	87.71
Rule_of_Thirds	0.352	33.16	34.27	34.02	41.68
Shallow_DOF	0.624	82.08	82.42	82.95	82.39
Silhouettes	0.791	93.73	92.49	91.14	93.05
Soft_Focus	0.312	49.89	44.91	44.57	46.41
Vanishing_Point	0.684	74.16	74.80	75.45	76.76

Rule of Thirds perform significantly better

Results: Per Class Precision on Flickr

Styles	Fusion (SoA) [Karayev et al. 2014]	Densenet161 [Huang et al. 2016a]	ResNet152 [He et al. 2016]	RAPID++	Sal-RGB
Bokeh	28.80	30.24	31.34	29.39	29.78
Bright	25.10	22.97	23.12	22.69	23.33
Depth_of_Field	16.90	18.24	17.28	16.19	17.91
Detailed	33.70	37.96	38.27	38.50	38.09
Ethereal	40.80	50.31	50.88	48.15	50.03
Geometric_Composition	41.10	47.56	47.57	45.47	47.83
Hazy	48.70	61.59	60.01	57.68	60.92
HDR	49.30	65.44	65.24	61.03	64.92
Horror	40.00	64.24	64.17	58.40	64.16
Long_Exposure	51.50	65.36	64.76	61.40	63.62
Macro	61.70	67.44	70.26	69.60	68.18
Melancholy	16.80	19.82	20.33	18.50	19.71
Minimal	51.20	45.78	46.22	46.18	45.34
Noir	49.40	58.40	57.27	54.69	57.86
Pastel	25.80	34.15	34.05	30.71	34.17
Romantic	mantic 22.70 30.13 25.15				28.62
Serene	28.10	30.41	30.04	30.04	29.80
Sunny	50.00	59.99	60.56	58.57	58.58
Texture	26.50	28.98	30.52	29.72	29.65
Vintage	28.20	37.60	36.02	35.97	36.55


Results: Common Confusions

	AVA Confusion Matrix														
C	Complementary Colors	0.65	0.01	0.02	0.02	0.01	0.02	0.07	0.01	0.02	0.07	0.02	0.01	0.02	0.04
	Duotones -	0.00	0.75	0.00	0.04	0.02	0.02	0.04	0.01	0.03	0.02	0.02	0.00	0.03	0.02
	HDR -	0.01	0.04		0.07	0.00	0.05	0.02	0.04	0.02	0.07	0.00	0.02	0.02	0.08
	Image Grain	0.01	0.00	0.01	0.82	0.01	0.02	0.04	0.01	0.01	0.05	0.01	0.02	0.01	0.00
	Light On White	0.01	0.00	0.00	0.00	0.95	0.00	0.03	0.00	0.00	0.01	0.01	0.00	0.01	0.00
	Long Exposure	0.03	0.04	0.03	0.02	0.02	0.62	0.02	0.05	0.02	0.02	0.03	0.00	0.06	0.04
True label	Macro ·	0.04	0.01	0.00	0.01	0.05	0.01	0.76	0.01	0.03	0.03	0.03	0.00	0.02	0.00
True	Motion Blur	0.03	0.02	0.01	0.03	0.02	0.11	0.06	0.45	0.03	0.03	0.06	0.00	0.11	0.04
	Negative Image	0.03	0.03	0.00	0.02	0.00	0.01	0.06	0.00	0.78	0.03	0.03	0.01	0.01	0.01
	Rule of- Thirds	0.03	0.05	0.02	0.04	0.04	0.03	0.13	0.02	0.02	0.49	0.03	0.02	0.04	0.03
	Shallow DOF	0.04	0.02	0.00	0.01	0.03	0.01	0.14	0.00	0.03	0.04	0.63	0.00	0.04	0.00
	Silhouettes	0.00	0.00	0.01	0.01	0.01	0.04	0.01	0.02	0.01	0.04	0.02	0.80	0.01	0.01
	Soft Focus	0.08	0.03	0.01	0.03	0.06	0.04	0.12	0.01	0.07	0.05	0.08	0.01	0.41	0.02
	Vanishing Point	0.01	0.04	0.01	0.02	0.03	0.01	0.02	0.01	0.02	0.03	0.00	0.00	0.01	0.80
		Complementary Colors	Duotones	HDR-	lmage Grain	Light On - White	Long	Macro-	Motion	Negative Image	Rule of - Thirds	Shallow DOF	Silhouettes-	Soft Focus	Vanishing Point
		Ö Predicted label													

Flickr Confusion Matrix

	Fileki Colliusion Matrix																			
Bokeh -	0.23	0.03	0.26	0.03	0.01	0.00	0.01	0.01	0.02	0.01	0.14	0.04	0.01	0.04	0.06	0.02	0.01	0.01	0.02	0.04
Bright -	0.04	0.26	0.05	0.08	0.02	0.05	0.05	0.02	0.03	0.05	0.10	0.01	0.03	0.02	0.02	0.01	0.04	0.08	0.02	0.03
Depth of -	0.10	0.05	0.29	0.03	0.01	0.02	0.02	0.02	0.03	0.02	0.09	0.04	0.01	0.04	0.04	0.02	0.03	0.02	0.03	0.06
Field Detailed -	0.03	0.07	0.04	0.40	0.01	0.06	0.02	0.02	0.03	0.03	0.06	0.01	0.02	0.02	0.02	0.01	0.03	0.04	0.06	0.03
Ethereal -	0.01	0.01	0.01	0.01	0.55	0.01	0.00	0.10	0.03	0.04	0.01	0.05	0.01	0.05	0.03	0.01	0.01	0.02	0.02	0.04
Geometric Composition	0.00	0.06	0.02	0.03	0.01	0.49	0.04	0.01	0.01	0.05	0.01	0.01	0.07	0.09	0.00	0.00	0.01	0.01	0.07	0.01
Hazy -	0.01	0.03	0.02	0.02	0.00	0.03	0.59	0.01	0.02	0.10	0.01	0.01	0.00	0.02	0.00	0.01	0.07	0.04	0.02	0.01
HDR -	0.00	0.00	0.01	0.00	0.03	0.00	0.01	0.71	0.01	0.04	0.00	0.03	0.01	0.02	0.01	0.01	0.03	0.06	0.01	0.01
Horror -	0.00	0.03	0.01	0.01	0.03	0.01	0.03	0.00	0.56	0.01	0.01	0.04	0.00	0.20	0.00	0.00	0.00	0.00	0.04	0.02
Long _ Exposure	0.00	0.01	0.00	0.01	0.01	0.02	0.03	0.02	0.01	0.77	0.00	0.00	0.01	0.03	0.00	0.00	0.03	0.04	0.01	0.00
Macro -	0.02	0.02	0.03	0.02	0.00	0.01	0.00	0.00	0.01	0.00	0.82	0.00	0.01	0.00	0.01	0.00	0.00	0.00	0.03	0.01
Melancholy -	0.01	0.01	0.06	0.01	0.10	0.02	0.02	0.06	0.07	0.02	0.01	0.24	0.02	0.14	0.03	0.03	0.02	0.03	0.04	0.06
Minimal -	0.02	0.02	0.01	0.00	0.01	0.11	0.00	0.06	0.01	0.05	0.06	0.02	0.45	0.03	0.01	0.00	0.02	0.04	0.09	0.01
Noir -	0.00	0.00	0.03	0.01	0.03	0.02	0.00	0.03	0.07	0.01	0.00	0.05	0.01	0.70	0.00	0.00	0.01	0.00	0.02	0.01
Pastel -	0.05	0.02	0.04	0.02	0.05	0.02	0.00	0.03	0.01	0.01	0.05	0.06	0.02	0.01	0.33	0.04	0.01	0.02	0.01	0.19
Romantic -	0.01	0.03	0.03	0.04	0.04	0.01	0.02	0.03	0.03	0.03	0.02	0.06	0.02	0.06	0.12	0.22	0.05	0.07	0.01	0.15
Serene -	0.02	0.03	0.04	0.05	0.02	0.01	0.04	0.08	0.01	0.08	0.04	0.02	0.04	0.03	0.03	0.01	0.28	0.11	0.04	0.02
Sunny -	0.00	0.01	0.01	0.01	0.01	0.01	0.02	0.07	0.00	0.05	0.00	0.01	0.01	0.02	0.00	0.01	0.05	0.70	0.01	0.01
Texture -	0.01	0.06	0.04	0.05	0.06	0.09	0.03	0.01	0.02	0.02	0.07	0.02	0.05	0.04	0.01	0.01	0.03	0.01	0.33	0.03
Vintage -	0.02	0.02	0.05	0.02	0.05	0.01	0.01	0.01	0.02	0.00	0.01	0.07	0.01	0.06	0.11	0.04	0.01	0.01	0.01	0.45
	Bokeh -	Bright -	Depth of Field	Detailed -	Ethereal -	Geometric	Hazy -	HDR -	Horror -	Long	Macro -	Melancholy -	Minimal -	Noir -	Pastel -	Romantic -	Serene -	Sunny -	Texture -	Vintage -

Results: Common Confusions

Long Exposure	Motion Blur
Shallow DOF	Macro
Shallow DOF	Bokeh
Geometric Composition	Minimal
Horror	Noir
Pastel	Vintage

Limitations

- Limited to a small number of attributes
- Geometric understanding is still quite low
- Attributes are overlapping which results in a high false positive rate.

Future Work

- Increase the number of style attributes
- Extend the system to videos and 360 images

Code and Data

https://github.com/V-Sense/A-Geometry-Sensitive-Approach-for-Photographic-Style-Classification.git

Contact

ghosalk@tcd.ie

V-SENSE

Many Thanks!