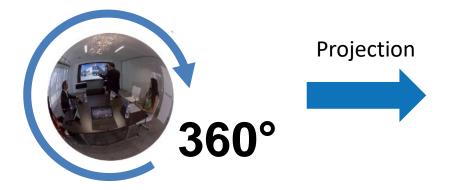

The University of Dublin

V-SENSE

VIVA-Q: Omnidirectional Video Quality Assessment based on Voronoi Patches and Visual Attention

Simone Croci, Emin Zerman, and Aljosa Smolic

ODV Pipeline



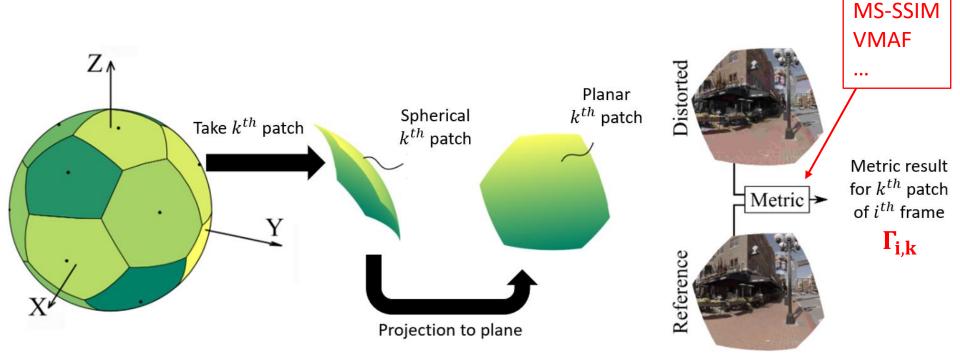
Trinity College Dublin, The University of Dublin

Unique Aspects of ODV

1. Spherical nature but stored in planar representations

Unique Aspects of ODV

2. Viewing characteristics: free look around, only viewport

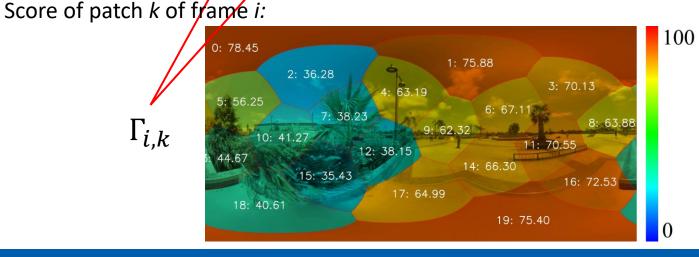

Unique Aspects of ODV

2. Viewing characteristics: free look around, only viewport

Visual Attention

PSNR

SSIM

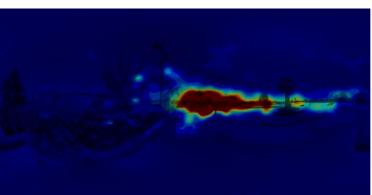

Trinity College Dublin, The University of Dublin

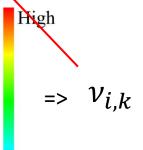
Score of frame *i*:

$$T_{i} = \frac{\sum_{k=1}^{M} \Gamma_{i,k}}{M}$$
$$T_{i}' = \frac{\sum_{k=1}^{M} \nu_{i,k} \Gamma_{i,k}}{\sum_{k=1}^{M} \nu_{i,k}}$$

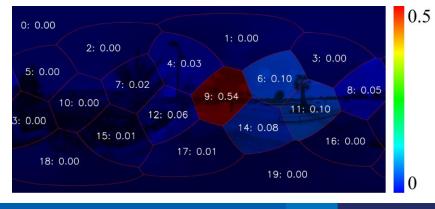
 $\Gamma_{i,k}$ Patch score

 $v_{i,k}$ Visual attention weight


Score of frame *i*:


$$T_{i} = \frac{\sum_{k=1}^{M} \Gamma_{i,k}}{M}$$
$$T_{i}' = \frac{\sum_{k=1}^{M} \nu_{i,k} \Gamma_{i,k}}{\sum_{k=1}^{M} \nu_{i,k}}$$

 $\Gamma_{i,k}$ Patch score


 $v_{i,k}$ Visual attention weight

Visual attention weight of patch k of frame i:

Low

V-SENSE

Final score from temporal pooling *P* of frame scores

VI-Q = $P(T_1, T_2, ..., T_N)$ **VIVA-Q** = $P(T'_1, T'_2, ..., T'_N)$

P: arithmetic mean, harmonic mean, min, median, p-th percentile, ...

ODV Dataset and Subjective Experiments

- Goal: metric evaluation
- ODV Dataset
 - 8 reference and 120 distorted ODVs
 - Scaling and compression distortions
- Subjective Experiments
 - Subjective scores (DMOS) and visual attention data

ODV Dataset

- 8K x 4K ERP
- YUV420p
- 10 sec.

(a) Basketball

(e) KiteFlite

(f) Gaslamp

(g) SkateboardTrick

(c) Harbor

(d) JamSession

(h) Trolley

ODV Dataset

Adaptive Streaming System Distortions

- 1. Scaling: 8128 x 4064, 3600 x 1800, 2032 x 1016
- 2. Compression:
 - HEVC/H.265 (libx265 codec): two-pass encoding with the video buffering verifier method
 - Five target bitrates selected by experts

=> 120 distorted ODVs

Subjective Experiments

• **M-ACR-HR**¹

Stimulus	Mid-Gray	Stimulus	Voting
(10 sec)	(3 sec)	(10 sec)	

- [0,100] continuous grading scale
- **Apparatus:** HTC Vive + Virtual Desktop

¹ Singla et al., "Comparison of subjective quality evaluation for HEVC encoded omnidirectional videos at different bit-rates for UHD and FHD resolution", Proceedings of the on Thematic Workshops of ACM Multimedia, 2017

Comparative Analysis

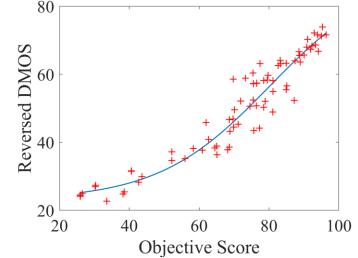
- Metrics:
 - VI-Q: VI-PSNR, VI-SSIM, VI-MS-SSIM, VI-VMAF

VIVA-Q: VIVA-PSNR, VIVA-SSIM, VIVA-MS-SSIM, VIVA-VMAF

- 20 patches with 10 pix/deg resolution
- Traditional video: PSNR, SSIM, MS-SSIM, VMAF¹
 - Formats: equirectangular proj. (ERP), cubemap proj. (CMP)
- ODV: S-PSNR-I², S-PSNR-NN², WS-PSNR³, CPP-PSNR⁴

¹Li et al., "Toward a practical perceptual video quality metric", Netflix Tech Blog, 2019
²Yu et al., "A framework to evaluate omnidirectional video coding schemes", ISMAR, 2015
³Sun et al., "Weighted-to-spherically-uniform quality evaluation for omnidirectional video", Signal Process. Lett., 2017
⁴Zakharchenko et al., "Quality metric for spherical panoramic video", Proc. SPIE, 2016

Comparative Analysis

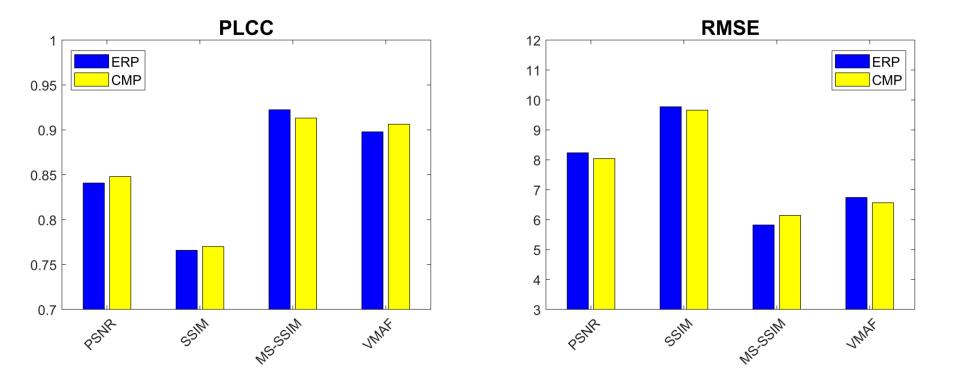

Correlation Analysis:

- Logistic function: $S' = \frac{\beta_1 \beta_2}{\frac{-\frac{S \beta_3}{S}}{2}}$
- Performance metrics
 - Pearson's linear correlation coefficient (PLCC)
 - Spearman's rank ordered correlation coefficient (SROCC)

 $1 + e^{-\frac{1}{\beta}}$

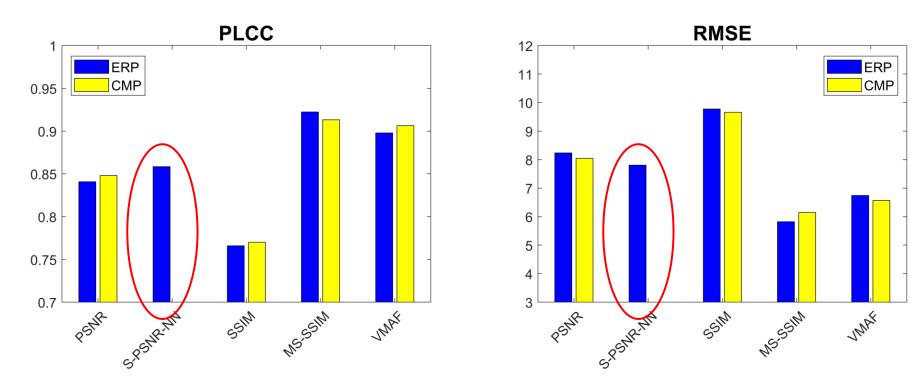
 $- + \beta_2$

- Root mean squared prediction error (RMSE)
- Mean absolute prediction error (MAE)

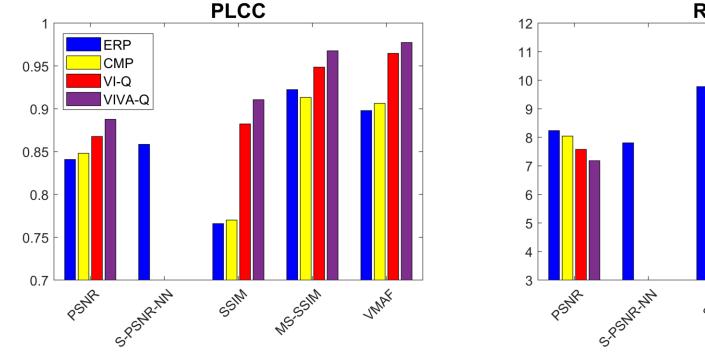


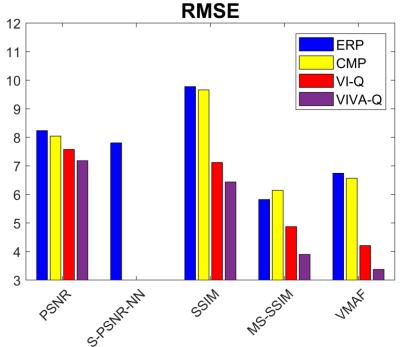
Metrics	PLCC	SROCC	RMSE	MAE
PSNR_{ERP}	0.8408	0.8237	8.2326	6.3169
PSNR_{CMP}	0.8480	0.8323	8.0419	6.2085
S-PSNR-I	0.8580	0.8438	7.8207	5.9715
S-PSNR-NN	0.8584	0.8433	7.8066	5.9648
WS-PSNR	0.8582	0.8430	7.8107	5.9772
CPP-PSNR	0.8579	0.8439	7.8200	5.9779
$SSIM_{ERP}$	0.7659	0.7551	9.7734	7.7396
SSIM_{CMP}	0.7701	0.7546	9.6583	7.6036
$MS-SSIM_{ERP}$	0.9224	0.9160	5.8232	4.4205
$MS-SSIM_{CMP}$	0.9132	0.9081	6.1422	4.7378
$VMAF_{ERP}$	0.8978	0.8864	6.7433	5.3631
$VMAF_{CMP}$	0.9063	0.8945	6.5630	5.2229
VI-PSNR	0.8676	0.8551	7.5743	5.8377
VI-SSIM	0.8823	0.8763	7.1172	5.2867
VI-MS-SSIM	0.9486	0.9450	4.8743	3.8475
VI-VMAF	0.9646	0.9581	4.2096	3.1548
VIVA-PSNR	0.8876	0.8712	7.1818	5.5072
VIVA-SSIM	0.9106	0.9007	6.4345	4.8097
VIVA-MS-SSIM	0.9676	0.9635	3.8982	3.1526
U VIVA-VMAF	0.9773	0.9717	3.3753	2.5948

Trinity College Dublin, The U


Standard Video Metrics

College


V-SENSE


S-PSNR-NN

Voronoi patches and Visual Attention

	2	K	<i>4K</i>		8 <i>K</i>	
Metrics	PLCC	SROCC	PLCC	SROCC	PLCC	SROCC
PSNR_{ERP}	0.7388	0.6139	0.8360	0.8343	0.9202	0.9183
PSNR_{CMP}	0.7517	0.6203	0.8431	0.8450	0.9221	0.9163
S-PSNR-I	0.7634	0.6469	0.8568	0.8615	0.9304	0.9228
S-PSNR-NN	0.7649	0.6433	0.8570	0.8574	0.9300	0.9227
WS-PSNR	0.7650	0.6366	0.8570	0.8574	0.9299	0.9230
CPP-PSNR	0.7638	0.6432	0.8567	0.8615	0.9302	0.9230
$SSIM_{ERP}$	0.6996	0.5570	0.7703	0.7951	0.8600	0.8482
SSIM_{CMP}	0.7011	0.5591	0.7714	0.7878	0.8565	0.8484
$MS-SSIM_{ERP}$	0.8841	0.7992	0.9150	0.9351	0.9652	0.9478
$MS-SSIM_{CMP}$	0.8673	0.7824	0.9071	0.9276	0.9583	0.9446
$VMAF_{ERP}$	0.9202	0.8735	0.9203	0.9071	0.9515	0.9240
$VMAF_{CMP}$	0.9226	0.8790	0.9309	0.9156	0.9567	0.9285
VI-PSNR	0.7640	0.6321	0.8660	0.8769	0.9358	0.9247
VI-SSIM	0.8346	0.7109	0.8794	0.9060	0.9367	0.9249
VI-MS-SSIM	0.8642	0.8807	0.8140	0.9437	0.9767	0.9557
VI-VMAF	0.9627	0.9287	0.9577	0.9458	0.9789	0.9500
VIVA-PSNR	0.7960	0.6644	0.9050	0.9006	0.9451	0.9321
VIVA-SSIM	0.8434	0.7326	0.9200	0.9321	0.9593	0.9392
VIVA-MS-SSIM	0.9529	0.9105	0.8332	0.9674	0.9829	0.9634
^e VIVA-VMAF	0.9762	0.9493	0.9737	0.9625	0.9862	0.9593

Trinity College

Findings

- VI-Q and VIVA-Q better than ERP and CMP
 - Low projection distortion of Voronoi patches
- VIVA-Q better than VI-Q
 - Visual attention is important
- Best: VIVA-VMAF

Conclusions

- VIVA-Q framework

- Metrics based on Voronoi patches and visual attention
- ODV Dataset with 8 reference and 120 distorted ODVs
 - Subjective scores and visual attention data
- Comparative analysis
 - VIVA-VMAF achieves state-of-the-art performance

Suggestions

- VIVA-Q as standard recommendation
- Extension of ODV Dataset
 - More contents
 - Different types of distortions
 - Subjective quality scores and visual attention data

The University of Dublin

Many Thanks!

- Contact: crocis@tcd.ie
- Paper: Croci et al., "Visual Attention-Aware Quality Estimation Framework for Omnidirectional Video using Spherical Voronoi Diagram", QUX 2020
- Code & Dataset: <u>https://v-sense.scss.tcd.ie/research/voronoi-based-objective-metrics/</u>